
Symmetrized cells in adaptive optimized

Schwarz

Conor McCoid

June 24th, 2025

McMaster University



Domain decomposition



What is domain decomposition?

Domain decomposition splits

large complicated domains into

smaller, easier subdomains. The

problem is solved on each

subdomain, information is passed

to other subdomains, then solved

on subdomains again, etc.,

creating an iterative method.

Figure 1: Example taken from

“Iterative Methods for Sparse Linear

Systems”, by Yousef Saad
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Discretization of the example

Now that we have our continuous

domain decomposition, we need

to discretize the problem and

split up the unknowns.

Figure 2: Nodes for example
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Matrix of the example

This discretization, with this

ordering for the nodes, comes

with a matrix, with one row and

one column per node. The

dashed lines show how the

domain decomposition splits up

the unknowns.

Figure 3: Matrix for example based

on nodes
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More complicated example

Figure 4: Also from Saad’s

“Iterative Methods”
Figure 5: Possible matrix for

example
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A general form of the matrix

In this talk, let us consider matrices that can take the form
A11 A1Γ

A22 A2Γ

. . .
...

Ann AnΓ

AΓ1 AΓ2 . . . AΓn AΓΓ




u1

u2
...

un

uΓ

 =


f1

f2
...

fn

fΓ

 , (1)

where Aii are square. This system represents n subdomains

connected through a global interface represented by Γ.
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The subproblems

Each subdomain now has its own subproblem:[
Aii AiΓ

AΓi AΓΓ + Si

][
ui

uΓ

]
=

[
fi

f̃i

]
, (2)

where f̃i is some modification of fΓ, and Si is some global

transmission matrix.

We see that the variables associated with the global interface Γ

appear in all subproblems. The global transmission matrix Si

dictates how these many copies communicate with one another.
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How to choose Si and f̃i

There are perfect choices of Si and f̃i such that each subproblem

gives the exact solution to the global problem on its respective

subdomain. However, these perfect choices are expensive to

compute.

Instead, the standard procedure is to make a priori choices that

give convergent iterative methods. These appear as:[
Aii AiΓ

AΓi AΓΓ + Si

][
u
(k+1)
i

u
(k+1)
Γi

]
=

[
fi

fΓ

]
+

∑
j ̸=i

[
−AΓj Tj

][
u
(k)
j

u
(k)
Γj

]
,

(3)

where

Si =
∑
j ̸=i

Tj . (4)
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Choices for Tj

The local transmission matrices Tj can represent boundary

conditions between the subdomains. Some common options:

� Dirichlet, setting the interface variables on subdomain 2 equal

to those found on subdomain 1

� Neumann, setting the derivatives to be the same

� Optimized, setting Robin boundary conditions to be the same,

using a Robin parameter that optimizes convergence rates

In this talk, there won’t be an a priori choice. The transmission

matrices will adapt to the iterative method.
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Symmetrized cells



What is a symmetrized cell?

For each subdomain, take a copy

of it and stitch it together along

their shared interface. This pair

is now perfectly symmetric, and

one subproblem describes both

copies.

Figure 6: A symmetrized square

domain with interfaces on two

opposing edges
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Algebra of a symmetrized cell

The equation for the unknowns on a symmetrized cell is:Aii AiΓ

AΓi AΓΓ AΓi

AiΓ Aii


 ûi

ûΓ

ûi

 =

fif̂i
fi

 . (5)

The solution on this cell does not correspond to the solution of the

global problem, but it may serve as a good initial guess.
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Subproblems of the cell

The iterative process of solving the equation on the cell is then

solving repeatedly the equation:[
Aii AiΓ

AΓi AΓΓ + T
(k+1)
i

][
u
(k+1)
i

u
(k+1)
Γi

]
=

[
fi

f̂i

]
+

[
−AΓi T

(k)
i

][
u
(k)
i

u
(k)
Γi

]
.

(6)

It is often better to present this in a corrector version that acts

only on the differences between successive iterates,

d
(k+1)
i = u

(k+1)
i − u

(k)
i :[

Aii AiΓ

AΓi AΓΓ + T
(k+1)
i

][
d
(k+1)
i

d
(k+1)
Γi

]
=

[
−AΓi T

(k)
i

][
d
(k)
i

d
(k)
Γi

]
. (7)
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Krylov subspace in the cell

We can use techniques from static condensation to reduce the

form of this system to acting only on the global interface:

d
(k+1)
Γi =

(
Âi + E

(k+1)
i

)−1
E

(k)
i d

(k)
Γi , (8)

where

Âi = AΓΓ − 2AΓiA
−1
ii AiΓ, E

(k)
i = T

(k)
i +AΓiA

−1
ii AiΓ.

This means the vectors d
(k+1)
Γi form a Krylov subspace:

d
(k+1)
Γi ∈ Kk+1

((
Âi + E

(k+1)
i

)−1
E

(k)
i ,d

(0)
Γi

)
. (9)
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Updates to T
(k)
i

The most important part of the symmetrized cells is the update to

the transmission matrix Ti. We want an update that uses

information obtained in solving equations on the cell and that

reduces E
(k)
i to zero, as this means the iterative process becomes

direct.

As a first approximation, use rank one updates that give the action

of E
(k)
i in the direction d

(k)
Γi :

T
(k+1)
i − T

(k)
i := −E(k)

i

d
(k)
Γi

(
d
(k)
Γi

)⊤

∥∥∥d(k)
Γi

∥∥∥2 .
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Iterative action approximation

If the vectors d
(k)
Γi aren’t orthogonal, then these updates will

interfere with each other. Run these vectors through modified

Gram-Schmidt to fix this issue.

1: Inputs: d
(k)
Γi , E

(k)
i d

(k)
Γi , all previous d

(j)
Γi and E

(j)
i d

(j)
Γi

2: Set wk := d
(k)
Γi and vk := E

(k)
i d

(k)
Γi

3: for j = 1 : k − 1 do

4: h← ⟨d(j)
Γi ,wk⟩, wk ← wk − hd

(j)
Γi

5: vk ← vk − hE
(j)
i d

(j)
Γi

6: end for

7: Output: ∆T
(k+1)
i := −vkw⊤

k
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Krylov subspace method

Incidentally, this will give an orthonormal basis for the Krylov

subspace. There is also an indirect Galerkin condition at work,

making this process essentially equivalent to the full

orthogonalization method (FOM), precursor to GMRES.

To show that, use the Woodbury matrix identity to write d
(k+1)
Γi as

d
(k+1)
Γi =

(
Âi + E

(k)
i

)−1
E

(k)
i d

(k)
Γi

w⊤
k

(
I −

(
Âi + E

(k)
i

)−1
E

(k)
i

)
wk

15



Indirect Galerkin condition

Next, consider the following Galerkin condition:(
I −

(
Âi + E

(k)
i

)−1
E

(k)
i

)
x− d

(k)
Γi ⊥ Kk, x ∈ Kk.

The solution satisfies

w⊤
k x =

w⊤
k d

(k)
Γi

w⊤
k

(
I −

(
Âi + E

(k)
i

)−1
E

(k)
i

)
wk

.

Since E
(k)
i has Kk−1 in its null space, we can write d

(k+1)
Γi as

d
(k+1)
Γi =

(
Âi + E

(k)
i

)−1
E

(k)
i x.
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Results of symmetrized cells

Once the iterative process on the cell is complete, we get the

following outputs:

excellent local transmission matrix: the matrix Ti (last to be

computed) is now a very good approximation of the

best possible local transmission matrix;

good initial guess of the solution on the cell: the solution ûi

is not the solution for the global problem, but it

satisfies the problem locally, making it a good initial

guess for the next stage.
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Continuous analogs

The matrix Ti approximates absorbing boundary conditions. These

conditions allow waves to pass through the boundary with no

reflection.

Several methods in the continuous space have been developed to

approximate ABCs:

� perfectly matched layers

� one-way equations

� change of variables

� probing
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Global reconstruction



Putting the pieces together again

Now that we have good transmission matrices and good initial

guesses, we can solve the global problem very quickly. Set

Si =
∑
j ̸=i

Tj , u
(0)
i = ûi,

then solve[
Aii AiΓ

AΓi AΓΓ + Si

][
u
(k+1)
i

u
(k+1)
Γi

]
=

[
fi

fΓ

]
+
∑
j ̸=i

[
−AΓj Tj

][
u
(k)
j

u
(k)
Γj

]
,

or a corrector version if preferred:[
Aii AiΓ

AΓi AΓΓ + Si

][
d
(k+1)
i

d
(k+1)
Γi

]
=

∑
j ̸=i

[
−AΓj Tj

][
d
(k)
j

d
(k)
Γj

]
.
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Condensed equation

Using the corrector version and the same techniques from static

condensation, the iteration can be represented acting solely on the

global interface:Â+
∑
j ̸=i

Ej

d
(k+1)
Γi =

∑
j ̸=i

Ejd
(k)
Γj ,

where

Â = AΓΓ −
n∑

i=1

AΓiA
−1
ii AiΓ, Ej = Tj +AΓjA

−1
jj AjΓ.
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Convergence rate

This means the convergence of the global reconstruction is defined

by


...

d
(k+1)
Γi
...

 =


. . .

Â+
∑

j ̸=iEj

. . .


−1


E2 E3 . . .

E1 E3 . . .

E1 E2
...

...
. . .




...

d
(k)
Γi
...

 .

The spectral radius of the matrix in this equation then dictates the

convergence rate. After the symmetrized cells iterations, this

spectral radius should be small, but more analysis is needed to

confirm this in general.
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Rectangular domain split into strips

The test problem used is the

Poisson equation on a

rectangular domain. The

subdomains are squares. In weak

scaling, we increase both the size

of the domain and the number of

strips. In strong scaling, we keep

the domain fixed but increase the

number of strips. Figure 7: Solution on square

domain
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Weak scaling

Figure 8: Error in global

reconstruction

Figure 9: Convergence rate by

number of blocks
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Strong scaling

Figure 10: Error in global

reconstruction

Figure 11: Convergence rate by

number of blocks
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Conclusions and future work

� Symmetrized cells is a highly parallelizable method for

constructing highly convergent transmission matrices

� Global reconstruction is scalable for some simple, small

examples

� Scalability needs to be tested on HPC examples with a

parallelized code base
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FLOP count

k maximum number of symmetrized cell iterations

ℓ number of global reconstruction iterations

m number of cells

N size of each cell

M size of the global interface

Symmetrized cells Global reconstruction

mult. mkM(N +M) +m3k2

2 M mℓM(N +M)

add. mkM(N +M) +m3k2

2 M mℓ(N +M) +mM

sys. solve mk mℓ
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