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Fixed point iterations



Fixed points in 1D

The fixed point of a function

g(x) is a point x∗ such that

g(x∗) = x∗.

These are also described as the

intersection between the lines

y = g(x) and y = x.

y = x

y = g(x)
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Fixed point iterations

To find fixed points of a given

function g(x), we can set up an

iteration:

xn+1 = g(xn).

This iteration stops at a fixed

point. It converges if g(xn) is

closer to x∗ than xn.

y = x

y = g(x)
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When does a fixed point iteration converge in 1D?

Convergence of the iteration

xn+1 = g(xn) depends on which

region (x, g(x)) lies.

1: Monotonic

divergence

2: Monotonic

convergence

3: Oscillatory

convergence

4: Oscillatory

divergence
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Fixed point iterations in higher dimensions

Above 1D, fixed points of a vector-valued multivariate function

g(x) satisfy

g(x∗) = x∗.

Fixed point iterations are defined as

xn+1 = g(xn).
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When does a fixed point iteration converge in nD?

Convergence can be shown with the Banach fixed-point theorem,

which in this context requires

∥g(x)− g(y)∥ ≤ q ∥x− y∥ , q ∈ [0, 1).

In the ‘regional’ framework from 1D, we require

∥x∗ − g(xn)∥ < ∥x∗ − xn∥ .

This distinguishes between convergence and divergence, but

monotonicity and oscillations are now harder to recognize.
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Numerical methods as fixed point iterations

Almost every iterative method can be expressed as a fixed point

iteration.

For example, consider Gauss-Seidel applied to:[
A B

C D

][
u

v

]
=

[
a

b

]

un+1 = A−1 (a−Bvn) , vn+1 = D−1 (b− Cun+1)

=⇒ vn+1 = D−1
(
b− CA−1 (a−Bvn)

)
= g(vn)
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Continuous fixed point iterations

We can represent a fixed point iteration as the numerical

integration of a function:

xn+1 − xn

∆t
= g(xn)− xn, ∆t = 1,

=⇒ dx

dt
= g(x)− x.
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Newton’s method



Newton’s method (in 1D)

Newton’s method is used to find a root of a given function f(x):

xn+1 = xn − f(xn)

f ′(xn)
.

This can be viewed as a fixed point iteration:

gf (x) = x− f(x)

f ′(x)
,

then a fixed point of gf (x) is a root of f(x).
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When does Newton’s method converge in 1D?

For Newton’s method the regions

of gf (x) depend on the slope of

f(x).

Most of the boundaries between

the regions are known problems

for Newton’s method: a slope of

zero divides regions 1 and 4, and

an infinite slope divides 1 and 2.

2
1

3

4
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Cycles in Newton’s method

The line between regions 3 and 4

can cause cycles in fixed point

iterations. For Newton’s method,

this happens when f(x) is

parallel to

fC(x) = C
√

|x− x∗|

for some constant C ∈ R.

x

f(x)
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Continuous Newton’s method

We can represent Newton’s method as the numerical integration of

an ODE:
xn+1 − xn

∆t
= − f(xn)

f ′(xn)
, ∆t = 1,

=⇒ ∂f

∂x

dx

dt
= −f(x) =⇒ f(x(t)) = f(x(0))e−t.
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Newton’s method in higher dimensions

Newton’s method in higher dimensions requires the Jacobian of the

function, Jf (x):

xn+1 = xn − J−1
f (xn)f(xn).

The Kantorovich Theorem tells us this method converges as long

as the initial guess is sufficiently close to the root (amongst other

assumptions).
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Davidenko-Branin trick

Davidenko (1953) and Branin (1972) suggest an update to

Newton’s method:
dx

dt
=

adj Jf
|det Jf |

f(x),

using some numerical integration scheme (the update is the

absolute value around det Jf ).

Because det Jf only changes sign when passing over a root, this

version of Newton’s method will always travel in the same direction

between roots. This allows the method to go over ‘humps’ in the

function that would cause Newton to diverge otherwise.
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Acceleration



Reposing a fixed point as a root

Given a function g(x) with a fixed point x∗, we can make a

function with a root:

f(x) = g(x)− x.

There are an infinite number of ways to construct such a function,

but this is the simplest.
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Newton-accelerated FP in 1D

Apply the Newton analysis to the

function g(x). The boundaries of

divergence are now when the

slope of g(x) is infinite, 1, or

between 1 and parallel to

gC(x) = C
√

|x− x∗|+ x

y = xg(x)
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When does Newton-accelerated FP converge in 1D?

We can show necessary and sufficient conditions for when

accelerating by Newton will guarantee convergence, based on the

behaviour of the iterative method.

g(x) lies in Necessary condition Sufficient condition

1 g′(x) > 1

2 g′(x) < 1 g′(x) < 1/2

3 g′(x) < 1/2 g′(x) < 0

4 g′(x) < 0
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Convergent iterative methods

It is sometimes possible to prove the guaranteed monotonic

convergence of iterative methods, i.e. Schwarz methods with

certain PDEs.

This means the fixed point for these methods is a contraction

mapping, putting it in region 2 in the above framework.
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A basic algorithm for 1D

Suppose g(x) lies in region 2. Start with some initial guess x0.

1. If g′(xn) = 1, then accelerating with Newton will cause a

division by infinity → use the fixed point iteration

2. If |g′(xn)− 1| < 1/2, then using Newton with the

Davidenko-Branin trick is guaranteed to be convergent → use

Newton

3. Let x̃ be the point halfway between xn and the Newton step;

if the sign of g(x̃)− x̃ is the same as g(xn)− xn, then the

fixed point lies between x̃ and the Newton step → use Newton

4. If none of these are true, use the fixed point iteration
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What about higher dimensions?

This algorithm relies on the analysis of the boundary between

regions 3 and 4. In 1D, that was lines parallel to C
√
|x− x∗|.

In higher dimensions, the boundary is significantly more

complicated. It may not be possible to extract necessary and

sufficient conditions from this analysis.
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Augmenting Newton’s method

If an iterative method is known to be convergent, then its fixed

point iteration can help anchor Newton’s method.

There are only three points of interest to an augmented Newton:

• the current iterate, xn;

• the fixed point step, g(xn);

• the Newton step, F (xn) (and possibly the

Newton-Davidenko-Branin step).

Thus, we need only consider the 2D plane that contains these

points. (The Newton, Newton-Davidenko-Branin, and current

iterate all lie on the same line.)

20



Plane of interest

• the current iterate, xn

• the fixed point step, g(xn)

• the Newton step, F (xn)

(and possibly the

Newton-Davidenko-Branin

step)

• the centre of the red circle is

the point in the plane

closest to the fixed point x∗

xn

g(xn)

−F (xn)

F (xn)

21



Trust region

Since the method is convergent,

g(xn) lies closer to x∗ than xn.

In the example here, the

Newton-Davidenko-Branin step

lies closer to the fixed point step

than to the current iterate,

suggesting we can accept it.

xn g(xn)

−F (xn)

F (xn)
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Line search

The fixed point step must have a

reasonable step size, unlike

Newton which may leap a great

distance away. But the Newton

direction may be preferable.

xn g(xn)
h

F (xn)

h
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Two-step

Take the fixed point step, then

step towards the Newton step,

but only part of the way.

xn g(xn)
h

F (xn)
h
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Future work

• Apply the region-based analysis to the higher dimension fixed

point and Newton methods

• Use continuous methods to retrieve the distinction between

monotonic and oscillatory behaviour in higher dimensions

• Find a way to compare augmented methods
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