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1 Introduction

When considering complex problems in three dimensional space it is sometimes necessary to consider a secondary

lattice overlapping a primary. While one hopes these lattices align in some way, this is not guaranteed. It is then a

problem to project information from one lattice onto the other. In such instances it is necessary to intersect the lattices,

observing how much two given volumes share a space. The intersection between two tetrahedra must be calculated,

ideally quickly and robustly in floating-point arithmetic.

This paper continues the work done in [15]. The authors presented there an algorithm for triangle-triangle intersec-

tions in 2D. It goes on to prove that the algorithm is robust in floating-point arithmetic. This algorithm is summarized

here as Algorithm 1 to show the necessary modifications when moving to three dimensions. It calculates the intersection

between two triangles𝑈 and 𝑉 . Note that the sign(𝑝) function used here is defined as

sign(𝑝) =

0 𝑝 < 0,

1 𝑝 ≥ 0.

Naturally, the tetrahedral version of this algorithm has some added complications. Most crucially, there are now two

types of intersections to find, those between the edges of 𝑈 and the faces of 𝑉 and those between the edges of 𝑉 and

the faces of 𝑈 . The 3D version of line 11 in Algorithm 1 prevents nesting these two types of calculations, as there are

now multiple ways to arrive at the same intersection.
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2 Conor McCoid and Martin J. Gander

Algorithm 1 PANG2 - intersection subroutine

1: Find 𝑋 , the barycentric coordinates of𝑈 with respect to 𝑉 , and set 𝑌 as the reference triangle with edges of length

1 aligned with the coordinate axes

2: for all vertices x𝑖 of 𝑋 do
3: if all coordinates are non-negative then
4: The 𝑖–th vertex of𝑈 lies in 𝑉

5: end if
6: end for
7: for all lines {𝑝 = 0}, 𝑝 a barycentric coordinate do
8: for all pairs of vertices such that sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) do
9: Calculate the two unknown coordinates 𝑞

𝑖 𝑗
𝑝 of the intersections

10: end for
11: Connect sign(𝑞𝑖 𝑗𝑝 ) with sign(𝑝𝑖 𝑗𝑞 ) with known relation

12: if sign(𝑞𝑖 𝑗𝑝 ) ≠ sign(𝑞𝑖𝑘𝑝 ) then
13: The vertex of 𝑌 at 𝑃𝑝 ∩ 𝑃𝑞 lies in 𝑋
14: end if
15: end for

Several algorithms for the intersection of tetrahedra already exist. For a succinct survey of current intersection

algorithms, see [18]. For a comparison of major algorithms, see [13]. We describe a few of these algorithms that have

particular relevance to the current paper.

Firstly, there is the Cyrus-Beck algorithm [4], which has become ubiquitous in applications. The key step of this

algorithm is to take two vertices of one tetrahedron𝑈 and test if they lie on opposite sides of a plane that contains a

face of the other tetrahedron 𝑉 . If so, then an intersection is calculated between this edge of𝑈 and this face of 𝑉 . We

have adapted this step in line 8 of Algorithm 1, and will adapt it further for the 3D version.

Secondly, parametric equations are frequently used in such algorithms [14]. We have largely eschewed these by

using barycentric coordinates. This presents greater upfront cost but minimizes calculations during runtime.

Finally, we mention the Sutherland-Hodgman algorithm [19]. This algorithm defines one of the tetrahedra, 𝑉 as the

space bounded by planes. The second tetrahedron 𝑈 is sequentially intersected with these planes, so that at each step

the intersection is that portion of 𝑈 in the ‘positive’ half-space defined by the plane with a face equal to the slice of 𝑈

that lies within the plane. This is highly asymmetric, as the planes of 𝑉 now have an order by which they intersect

𝑈 . The algorithm we will present includes Sutherland-Hodgman as a subset of calculations, up to numerical error.

However, we regain symmetry between the planes of 𝑉 .

The principal strategy employed in the algorithm presented here, namely determining the signs of coordinates by

avoiding direct calculation, is not mutually exclusive with other strategies. For example, one can employ snap-rounding

[5, 12], and then use the algorithm presented here on the integer-valued coordinates. Several aspects would have to be

adapted to this new context, but in principle a combined approach is possible.

Simplicial intersections are performed as subroutines in multiscale methods applied to finite element methods [7].

In particular, 3D Arlequin methods require tetrahedral intersections [20]. See [6] for details on the Arlequin method

and [1] for an example of its use of triangular intersections. Mortar methods [17, 21] also use simplicial intersections,

though primarily 1D and 2D. Tetrahedral intersections would be a part of 4D mortar methods, but the authors are

unaware of any use of such methods. The predecessors of the algorithm presented here, PANG and PANG-3D [9, 10],

have been employed in [2, 3, 11, 16].
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Intersection of tetrahedra 3

Robust simplicial intersection algorithms are but one necessary component of robust lattice intersection algorithms.

The algorithm presented here must be combined with some strategy for progressing through lattices, such as an

advancing front algorithm [8–10]. If the strategy employed is not robust in its own right, i.e. small errors in the

calculation of any one simplicial intersection cause large errors in the resulting lattice intersection, then using a robust

simplicial intersection algorithm will not salvage it. The original advancing front algorithm used in PANG and PANG-3D

was susceptible to small errors that would prematurely terminate the advance of the front. An update released with

[15] improved the algorithm, but it is not known if it is robust.

2 Change of coordinates

To simplify calculations, transform the tetrahedron 𝑉 into the reference tetrahedron 𝑌 with vertices at the positions

(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). The tetrahedron𝑈 is likewise transformed under the same affine transformation

into the tetrahedron 𝑋 . To do so, one must determine the nature of the affine transformation.

Represent the positions of the vertices of 𝑉 by the matrix

v01⊤ +
[
0 v1 v2 v3

]
,

where v0 is the position of the vertex to be mapped to the origin, v1, v2 and v3 are the vectors spanning between v0
and the remaining vertices, 0 is a column vector with three zeros and 1⊤ =

[
1 1 1 1

]
. Ideally, v1, v2 and v3 are

orthogonal. The best choice of v0 is one in which this is true, or nearly so.

The process of transforming from the vertices of 𝑉 to the vertices of 𝑌 can be written as an affine transformation:

𝐴

(
v01⊤ +

[
0 v1 v2 v3

] )
+ b1⊤ =


0 1 0 0

0 0 1 0

0 0 0 1

 .
The vector b is then −𝐴v0 and the matrix 𝐴 is the inverse of the matrix

[
v1 v2 v3

]
.

This affine transformation must be applied to the ’subject’ tetrahedron 𝑈 to acquire its transformation 𝑋 . As with 𝑉 ,

the position of the vertices of 𝑈 may be represented by the matrix u01⊤ +
[
0 u1 u2 u3

]
. Let the 𝑖–th vertex of 𝑋

have position (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ). These values may then be found by solving the system

[
v1 v2 v3

] 
𝑥0 𝑥1 𝑥2 𝑥3

𝑦0 𝑦1 𝑦2 𝑦3

𝑧0 𝑧1 𝑧2 𝑧3

 = u01⊤ +
[
0 u1 u2 u3

]
− v01⊤ . (1)

It will be useful to add a fourth coordinate to each vertex of 𝑋 . Let𝑤𝑖 = 1 − 𝑥𝑖 − 𝑦𝑖 − 𝑧𝑖 for all 𝑖 . By including this

coordinate the sum of the coordinates is equal to 1. Thus, these are the barycentric coordinates of𝑈 with respect to 𝑉 .

Snippet 1 gives a simple four line procedure for computing these coordinates in MATLAB. The coordinates of the

tetrahedra𝑈 and 𝑉 are taken as input and the barycentric coordinates of 𝑋 are given as output.

3 Corners of the intersection

The intersection between the tetrahedra 𝑋 and 𝑌 is a polyhedron 𝑍 . There are four types of corners to this polyhedron:

vertices of 𝑋 that lie inside 𝑌 ; intersections between the edges of 𝑋 and the faces of 𝑌 ; intersections between the edges

of 𝑌 and the faces of 𝑋 and; vertices of 𝑌 that lie inside 𝑋 . These corners form a hierarchy, with each type informing

the calculations of later types. The levels of this hierarchy will be considered one at a time.
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4 Conor McCoid and Martin J. Gander

1 v0=V(:,1);
2 A=V(:,2:4)-v0;
3 X=A\(U-v0);
4 X=[1-sum(X,1);X]; % barycentric coord.s of U

Snippet 1. MATLAB code snippet of the change of coordinates. V and U are 3 × 4 matrices with each row corresponding to an original
coordinate and each column a tetrahedral vertex. The resulting 4× 4matrix X is the transformation of U into the barycentric coordinate
system of V.

1 sX=X>=0; % signs of barycentric coordinates
2 if prod(sum(sX,2))==0
3 W=[];
4 return
5 end
6 W=U(:,prod(sX)==1); % vertices of U in V

Snippet 2. MATLAB code snippet of the check of vertices of𝑋 that lie inside 𝑌 . Signs are stored using the binary-valued sign function.
First, a check is made if 𝑋 lies entirely on one side of a plane 𝑃𝑝 , which implies no intersection between 𝑋 and 𝑌 . Then, if the product
of all signs in a column is 1, then the corresponding vertex of𝑈 lies in𝑉 .

Geometrically, this hierarchy is symmetric. The calculations of the intersections between edges of 𝑋 and faces of

𝑌 are identical to those between the edges of 𝑌 and faces of 𝑋 , if one exchanges the roles of 𝑋 and 𝑌 . However, in

floating-point arithmetic, these calculations may become inconsistent. In particular, if one of these sets fails to find

intersections, the numerical result may be two dimensional and therefore essentially eliminated. It is therefore crucial

that each level of the hierarchy be consistent with the previous levels.

3.1 Vertices of 𝑋 that lie inside 𝑌

The reference tetrahedron 𝑌 is bounded by four infinite planes: 𝑃𝑥 = {𝑥 = 0}, 𝑃𝑦 = {𝑦 = 0}, 𝑃𝑧 = {𝑧 = 0} and

𝑃𝑤 = {𝑥 + 𝑦 + 𝑧 = 1} = {𝑤 = 0}. Each plane is defined by the subspace of R3
where one of the coordinates is zero. The

tetrahedron 𝑌 lies at the intersection of the non-negative half-spaces bounded by these planes. Therefore, the 𝑖–th

vertex of 𝑋 , x𝑖 = (𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), lies in 𝑌 if and only if all coordinates are non-negative. Snippet 2 gives this check in

MATLAB code.

The edge between two vertices intersects 𝑃𝑝 only if sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ), where 𝑝 is one of the four coordinates. The

signs of 𝑝𝑖 then indicate the number of intersections between the edges of 𝑋 and the plane 𝑃𝑝 to calculate. Snippet 3

shows MATLAB code that determines which edges intersect which planes.

The case where 𝑝𝑖 = 0 is considered in [15] and will be briefly summarized here. Moving x𝑖 an imperceptible distance

into 𝑌 does not change the shape of the polyhedron of intersection. Thus, the degenerate case where 𝑝𝑖 = 0 can be

treated as the non-degenerate case where 0 < 𝑝𝑖 < 𝜖𝑚 , i.e. 𝑝𝑖 is positive but below machine precision. It is therefore

practical to use the binary-valued sign function previously defined.

Proposition 1. Only zero, three or four intersections may occur between the edges of 𝑋 and the plane 𝑃𝛾 .

Proof. For an intersection to exist, sign(𝑝𝑖 ) and sign(𝑝 𝑗 ) must disagree. There are four 𝑝𝑖 (𝑖 = 0, ..., 3), and sign(𝑝𝑖 )
may take one of two values. There are only three ways to partition four objects (𝑝𝑖 ) into two groups (either 0 or 1),

which may be proven by the partition function. These partitionings are listed in Table 1, where𝑚(𝑎) and𝑚(𝑏) are the
multiplicities of elements labelled 𝑎 and 𝑏, respectively. A pair is formed by taking one element of each group. The

number of pairs is then the product of the two multiplicities. □
Manuscript submitted to ACM



Intersection of tetrahedra 5

1 S1=false(4,6); % indicators of intersections
2 jmap=[1,1,2,1,2,3; % ordering of edges
3 2,3,3,4,4,4];
4

5 for i=1:4 % for each ref. plane
6 for j=1:6 % for each pair of vertices of X
7 j1=jmap(1,j); j2=jmap(2,j); % vertices of this pair
8 if sX(i,j1)~=sX(i,j2) % determine if they intersect
9 S1(i,j)=true;
10 end
11 end
12 end

Snippet 3. MATLAB code snippet that determines which edges of𝑋 intersect which planes of𝑌 . Also included is a declaration of those
pairs of vertices of 𝑋 that make up a given edge. A consistent ordering of these edges must be used throughout any implementation.

𝑚(𝑎) 𝑚(𝑏) pairs

4 0 0

3 1 3

2 2 4

Table 1. Ways to partition four elements into two parts.

Fig. 1. The five possible configurations of𝑋 with respect to a plane of 𝑌 . There are either zero, three or four intersections in the plane.

This proposition tells us that the part of 𝑋 that intersects the plane of 𝑌 is a triangle, a quadrilateral, or does not

exist, see Figure 1. This allows us to consider the intersection of these shapes with the face of 𝑌 that lies in the plane,

thereby reducing to a two dimensional calculation.

3.2 Intersections between edges of 𝑋 and faces of 𝑌

Suppose sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) for some 𝑝 . Then there is an intersection between the edge of 𝑋 lying between the 𝑖–th

and 𝑗–th vertices and the plane 𝑃𝑝 . This intersection lies in the plane 𝑃𝑝 and so its value of 𝑝 is zero. The remaining

three coordinates must be found through calculation.

Let 𝑞
𝑖 𝑗
𝑝 be one of the three coordinates of this intersection. Note it is specified by two vertices of 𝑋 , 𝑖 and 𝑗 , and the

particular plane 𝑃𝑝 this edge intersects. Using Cramer’s rule, it is equal to

𝑞
𝑖 𝑗
𝑝 =

𝑞 𝑗𝑝𝑖 − 𝑞𝑖𝑝 𝑗
𝑝𝑖 − 𝑝 𝑗

=

�����𝑞𝑖 𝑝𝑖

𝑞 𝑗 𝑝 𝑗

����������1 𝑝𝑖

1 𝑝 𝑗

�����
. (2)

Examples of the numerators of this expression are presented in Table 2. The intersections𝑤
𝑖 𝑗
𝑝 and 𝑞

𝑖 𝑗
𝑤 are presented
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6 Conor McCoid and Martin J. Gander

Plane 𝑃𝑝 Numerator of 𝑥
𝑖 𝑗
𝑝 Numerator of 𝑦

𝑖 𝑗
𝑝 Numerator of 𝑧

𝑖 𝑗
𝑝 Numerator of𝑤

𝑖 𝑗
𝑝

𝑥 = 0, 𝑝 = 𝑥

����𝑥𝑖 𝑦𝑖
𝑥 𝑗 𝑦 𝑗

���� ����𝑥𝑖 𝑧𝑖
𝑥 𝑗 𝑧 𝑗

���� ����𝑥𝑖 1 − 𝑦𝑖 − 𝑧𝑖
𝑥 𝑗 1 − 𝑦 𝑗 − 𝑧 𝑗

����
𝑦 = 0, 𝑝 = 𝑦

����𝑦𝑖 𝑥𝑖
𝑦 𝑗 𝑥 𝑗

���� ����𝑦𝑖 𝑧𝑖
𝑦 𝑗 𝑧 𝑗

���� ����𝑦𝑖 1 − 𝑥𝑖 − 𝑧𝑖
𝑦 𝑗 1 − 𝑥 𝑗 − 𝑧 𝑗

����
𝑧 = 0, 𝑝 = 𝑧

����𝑧𝑖 𝑥𝑖
𝑧 𝑗 𝑥 𝑗

���� ����𝑧𝑖 𝑦𝑖
𝑧 𝑗 𝑦 𝑗

���� ����𝑧𝑖 1 − 𝑥𝑖 − 𝑦𝑖
𝑧 𝑗 1 − 𝑥 𝑗 − 𝑦 𝑗

����
𝑥 + 𝑦 + 𝑧 = 1, 𝑝 =𝑤

����1 − 𝑦𝑖 − 𝑧𝑖 𝑥𝑖
1 − 𝑦 𝑗 − 𝑧 𝑗 𝑥 𝑗

���� ����1 − 𝑥𝑖 − 𝑧𝑖 𝑦𝑖
1 − 𝑥 𝑗 − 𝑧 𝑗 𝑦 𝑗

���� ����1 − 𝑥𝑖 − 𝑦𝑖 𝑧𝑖
1 − 𝑥 𝑗 − 𝑦 𝑗 𝑧 𝑗

����
Table 2. Numerators of intersection coordinates for each plane of 𝑌 .

Fig. 2. Intersections between edges of 𝑋 and planes of 𝑌 are connected along the same edge. A change in the sign of one of them
causes a commensurate change in the sign of the other.

without reference to the barycentric coordinate𝑤 , should one wish to avoid storing this coordinate. Each value in Table

2 appears twice. Thus, of twelve entries only six need to be calculated. Moreover, Table 2 connects these intersections

together, see Figure 2.

Before codifying this relationship between signs, we must first introduce a new operator for the function sign(𝑝).
When using trinary-valued sign functions, regular multiplication allows the product of two negative signs to be positive,

so that the product of the signs of two numbers equals the sign of the product of the two numbers. For binary-valued

sign functions, this behaviour is preserved with the logical biconditional operator.

Definition 1 (Logical biconditional operator). The operator ⊗ that acts as 0 ⊗ 0 = 1, 1 ⊗ 1 = 1 and 0 ⊗ 1 = 0 is called

the logical biconditional operator.
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Intersection of tetrahedra 7

1 sQ=false(4,6,4); % signs of intersections (# faces of Y x # edges of X x # coord.s)
2 Q=zeros(4,6,4); % intersection coord.s (# coord.s x # int.s x # faces)
3 indi=1:4;
4 for j=1:6 % for each pair of vertices (edge of X)
5 j1=jmap(1,j); j2=jmap(2,j); % pair of vertices
6 flagQ=false(4,4); % flags for known signs (# planes x # coords.)
7 for i=indi(S1(:,j)) % for each ref. plane with an intersection
8 indk=indi(indi~=i); % don't need to look at coord. assoc. w/ plane i
9 sQ(i,j,i)=true; % coord. assoc. w/ plane i is zero and therefore positive
10 for k=indk % for each remaining coord.
11 if ~S1(k,j) % no int. for this edge of X in k direction
12 sQ(i,j,k)=sX(k,j1); % inherited sign
13 flagQ(i,k)=true; % sign now known
14 elseif flagQ(k,i) % paired sign is already known
15 sQ(i,j,k)=~xor(sQ(k,j,i),~xor(sX(i,j1),sX(k,j2)));
16 flagQ(i,k)=true; % sign now known
17 elseif ~flagQ(i,k) % check if sign has been found
18 q=EdgeIntersect(X([i,k],j1),X([i,k],j2)); % calc. coord.
19 Q(k,j,i)=q; % store coord.
20 sQ(i,j,k)=q>=0; % determine sign directly
21 flagQ(i,k)=true; % sign now known
22 end
23 end
24 end
25 end

Snippet 4. MATLAB code for determining signs of intersection coordinates, using previous knowledge to avoid calculations. The
~xor() function operates as ⊗, see Definition 1. The EdgeIntersect() function can implement equation (2) or any other method for
finding the intersection of two lines with endpoints X([i,k],j1) and X([i,k],j2).

Lemma 2. Suppose sign(𝑞𝑖 ) ≠ sign(𝑞 𝑗 ) and sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ), then

sign(𝑞𝑖 𝑗𝑝 ) ⊗ sign(𝑝𝑖 𝑗𝑞 ) = sign(𝑞𝑖 ) ⊗ sign(𝑝 𝑗 ).

Proof. The result is found by considering the ratio between 𝑞
𝑖 𝑗
𝑝 and 𝑝

𝑖 𝑗
𝑞 :

sign(𝑞𝑖 𝑗𝑝 ) ⊗ sign(𝑝𝑖 𝑗𝑞 ) = sign

(
𝑞
𝑖 𝑗
𝑝

𝑝
𝑖 𝑗
𝑞

)
= sign

©­­­­­­«

�����𝑞𝑖 𝑝𝑖

𝑞 𝑗 𝑝 𝑗

����������1 𝑝𝑖

1 𝑝 𝑗

�����

�����1 𝑞𝑖

1 𝑞 𝑗

����������𝑝𝑖 𝑞𝑖

𝑝 𝑗 𝑞 𝑗

�����
ª®®®®®®¬
= sign

(
−
𝑞 𝑗 − 𝑞𝑖
𝑝 𝑗 − 𝑝𝑖

)

= sign(𝑞𝑖 ) ⊗ sign(𝑝 𝑗 ),

thus giving the statement of the lemma. □

An intersection lies on 𝑌 if and only if all of its coordinates are non-negative. The sign of each coordinate is therefore

important. This sign can be retrieved without calculation if the two vertices x𝑖 and x𝑗 have the same sign in that

coordinate. Then the sign of the intersection is inherited. Note in that case the intersection’s pair in Table 2 does not

need to be found, as it fails the test sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ). This allows for efficient implementation, see Snippet 4 for an

example in MATLAB.
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8 Conor McCoid and Martin J. Gander

1 if prod(sQ(i,j,:))==1 % all coord.s positive
2 for k=indk(indk~=1) % for all coord.s (except zeroth coord.)
3 if Q(k,j,i)==0 % this coord. not yet calculated
4 Q(k,j,i)=EdgeIntersect(X([i,k],j1),X([i,k],j2));
5 end
6 end
7 W=[W, v0+A*Q(2:end,j,i)]; % add this int. to Z
8 end

Snippet 5. MATLAB code for determining if an intersection lies on 𝑌 and transforming it into original coordinates. This snippet is to
be inserted between lines 23 and 24 in Snippet 4 for optimal efficiency.

Lemma 3. Suppose sign(𝑞𝑖 ) = sign(𝑞 𝑗 ) and sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ), then

sign(𝑞𝑖 𝑗𝑝 ) = sign(𝑞𝑖 ) = sign(𝑞 𝑗 ).

Proof. This may be proven directly:

sign(𝑞𝑖 𝑗𝑝 ) = sign

(
𝑞 𝑗𝑝𝑖 − 𝑞𝑖𝑝 𝑗
𝑝𝑖 − 𝑝 𝑗

)
= sign(𝑞 𝑗 ) ⊗ sign(𝑝𝑖 )⊗2 ⊗ sign

( ��𝑞 𝑗 �� |𝑝𝑖 | + |𝑞𝑖 |
��𝑝 𝑗 ��

|𝑝𝑖 | +
��𝑝 𝑗 ��

)
= sign(𝑞 𝑗 ),

where 𝑠⊗2 = 𝑠 ⊗ 𝑠 and is always equal to 1 by Definition 1. □

If an intersection is found to lie on𝑌 then we require its coordinates in the original system. Because we use barycentric

coordinates retrieving original coordinates is a straightforward matter. If a point has barycentric coordinates (𝑤, 𝑥,𝑦, 𝑧)
then its position in the original coordinates is

v0 + 𝑥v1 + 𝑦v2 + 𝑧v3 . (3)

See Snippet 5 for this transformation. The fourth coordinate,𝑤 , is not used to reverse the transformation. Its purpose is

solely to determine the relative position with respect to 𝑃𝑤 .

3.2.1 Straight line principle. A line between two points is naturally convex. This fact has been used to inherit signs of

intersections as described above, as well as implicitly in Lemma 2. This ensures the projection of the intersections onto

the plane 𝑃𝑝 have signs consistent with that of a straight line for any choice of 𝑝 . However, it does not prevent those

intersections being consistent in R3
.

To explain further, consider one edge of 𝑋 between vertices 0 and 1 that passes through the planes 𝑃𝑥 , 𝑃𝑦 and

𝑃𝑧 . Without loss of generality, sign(𝑥0) = sign(𝑦0) = sign(𝑧0) = +, while sign(𝑥1) = sign(𝑦1) = sign(𝑧1) = −. Three
intersections must be calculated, one for each plane the line passes through. No signs are inherited and Lemma 2 may

be applied. Doing so means only three signs need to be calculated and the others may be found through the use of

Lemma 2. If those calculations are subjected to round-off error, it is possible to find that each intersection has one

positive and one negative coordinate. However, this is impossible for this straight line. We must therefore change some

of the signs to enforce its straightness.

Suppose the line represents the path of a particle through space that begins at x0 and travels to x1. As it does so, it
passes through the planes 𝑃𝑥 , 𝑃𝑦 and 𝑃𝑧 . Once it passes through each, the particle’s coordinate in that direction has

changed sign. That is, before the particle has passed through 𝑃𝑥 , it has a positive sign. Once it passes through 𝑃𝑥 , it has

a negative sign.
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Intersection of tetrahedra 9

𝑥 𝑦 𝑧

x0 + + +

∩𝑃𝑥 + +

∩𝑃𝑦 [-]

∩𝑃𝑧 [-]

x1 - - -

𝑥 𝑦 𝑧

x0 + + +

∩𝑃𝑥 [+] (+)

∩𝑃𝑦 - +

∩𝑃𝑧 (-) [-]

x1 - - -

Table 3. Signs of the edge of 𝑋 between vertices 0 and 1. Square brackets indicate the signs have been found using Lemma 2, while
parentheses indicate the use of the straight line principle.

1 if sum(S1(:,j))>2 % if there are enough int.s for this edge of X
2 diff1=xor(permute(sQ(i,j,indk),[3,2,1]),sX(indk,j1)); % find which coord.s have different signs from
3 diff2=xor(permute(sQ(i,j,indk),[3,2,1]),sX(indk,j2)); % the vertices on this edge of X
4 if sum(diff1)==1 % if there is 1 int. between this int. and the 1st vertex
5 ind_diff=indk(~diff1); % for those coord.s which differ
6 k=indk(diff1); % for the plane that causes the different sign
7 sQ(k,j,ind_diff)=sQ(i,j,ind_diff); % fill in the signs for the intermediary int.
8 flagQ(k,ind_diff)=true; % flag that we now know them
9 elseif sum(diff2)==1 % else if there is 1 int. between this int. and the 2nd vertex
10 ind_diff=indk(~diff2);
11 k=indk(diff2);
12 sQ(k,j,ind_diff)=sQ(i,j,ind_diff); % fill in the signs for the intermediary int.
13 flagQ(k,ind_diff)=true; % flag that we now know them
14 end
15 end

Snippet 6. Straight line principle coded in MATLAB. This is to be inserted between lines 23 and 24 in Snippet 4, after Snippet 5.

The particle must pass through each plane one at a time. Without loss of generality, suppose the particle passes first

through 𝑃𝑥 , then through 𝑃𝑦 and finally through 𝑃𝑧 . Since its sign in the 𝑥-direction must change once it has passed

through 𝑃𝑥 , sign(𝑥01𝑞 ) = sign(𝑥1) for 𝑞 = 𝑦, 𝑧. Likewise, its sign in the 𝑧-direction can only change once it has passed

through 𝑃𝑧 , and so sign(𝑧01𝑞 ) = sign(𝑧0) for 𝑞 = 𝑥,𝑦.

Let us refer to this idea as the straight line principle. It only needs to be applied when one has calculated the signs of

the middle intersection along a given line. To see this, consider Table 3, which uses the example described above. On

the right, we assume the intersection with 𝑃𝑥 has been calculated first and Lemma 2 has provided two other signs. The

remaining two signs, those of 𝑧01𝑦 and 𝑦01𝑧 , are linked by Lemma 2, meaning only one is needed to complete the table.

The sign of 𝑧01𝑦 may be either + or -, and the straight line principle will not be violated.

Meanwhile, on the left we assume the intersection with 𝑃𝑦 has been calculated first. Again, Lemma 2 reduces the

unknown signs to two, this time 𝑧01𝑥 and 𝑥01𝑧 . The only way to maintain the straight line principle is to have sign(𝑧01𝑥 ) = +.
Note this implies that for the six signs associated with this line, there are only two degrees of freedom, rather than

the three one expects as a result of Lemma 2. However, it is not known which two signs will immediately provide the

other four, as the order of the intersections is determined by the signs.

3.3 Intersections between edges of 𝑌 and faces of 𝑋

The edges of 𝑌 lie at the intersection of two of the planes, 𝑃𝑝 ∩ 𝑃𝑞 . Since from the previous step we have polygons

𝑋 ∩ 𝑃𝑝 that lie within 𝑃𝑝 , we can intersect these polygons with 𝑃𝑞 to find the intersection between these edges and

faces of 𝑋 . The vertices of these polygons are the intersections between edges of 𝑋 and faces of 𝑌 . This level of the
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10 Conor McCoid and Martin J. Gander

hierarchy is then significantly complicated compared to the previous, as we replace vertices with intersections and

triangular faces with polygons.

The procedure is identical in this restricted space. Without loss of generality suppose we are intersecting 𝑋 ∩ 𝑃𝑥
with 𝑃𝑦 . There are three non-zero coordinates in the plane 𝑃𝑥 : 𝑦, 𝑧 and𝑤 . By Proposition 1 there are either zero, three

or four intersections in 𝑋 ∩ 𝑃𝑥 . An intersection occurs between 𝑋 ∩ 𝑃𝑥 and 𝑃𝑦 if and only if sign

(
𝑦
𝑖 𝑗
𝑥

)
≠ sign

(
𝑦𝑖𝑘𝑥

)
.

There may then be zero, two, three or four edges of 𝑋 ∩ 𝑃𝑥 that intersect 𝑃𝑦 , where each edge lies between a pair of

these intersections. If one excludes edges of 𝑋 ∩ 𝑃𝑥 on its interior, which we can do since 𝑋 ∩ 𝑃𝑥 is convex, then there

can be only zero or two such edges that intersect 𝑃𝑦 .

Code for determining whether this type of intersection occurs is nearly identical to Snippet 3. However, instead

of looping over edges of 𝑋 , the snippet loops over faces of 𝑋 and must therefore associate the previously calculated

intersections with particular faces. This is done through careful ordering of objects throughout the implementation.

Let us consider one of those edges, and let us suppose the intersections it connects are indexed by 𝑖 𝑗 and 𝑖𝑘 . Then

sign

(
𝑦
𝑖 𝑗
𝑥

)
≠ sign

(
𝑦𝑖𝑘𝑥

)
. The intersection that results has only two non-zero coordinates now, those of 𝑧 and𝑤 . These

may be written as

𝑧
𝑖 𝑗𝑘
𝑥𝑦 =

𝑧
𝑖 𝑗
𝑥 𝑦

𝑖𝑘
𝑥 − 𝑧𝑖𝑘𝑥 𝑦

𝑖 𝑗
𝑥

𝑦𝑖𝑘𝑥 − 𝑦𝑖 𝑗𝑥
, 𝑤

𝑖 𝑗𝑘
𝑥𝑦 =

𝑤
𝑖 𝑗
𝑥 𝑦

𝑖𝑘
𝑥 −𝑤 𝑖𝑘𝑥 𝑦

𝑖 𝑗
𝑥

𝑦𝑖𝑘𝑥 − 𝑦𝑖 𝑗𝑥
. (4)

This makes the intersection calculation recursive.

There are multiple ways to arrive at the same edge of 𝑌 . In the above example we considered 𝑋 ∩ 𝑃𝑥 intersected
with 𝑃𝑦 , but we could also have done 𝑋 ∩ 𝑃𝑦 intersected with 𝑃𝑥 . However, this would have changed the formulas we

used to arrive at the intersection, even though this intersection should not depend on the order in which we choose

planes. This could easily lead to problems of consistency in the algorithm if these formulas produce different results. To

avoid this, we may use a more general formula for these intersections.

Lemma 4. The 𝑟–coordinate of the intersection between the face of 𝑋 with vertices x𝑖 , x𝑗 and x𝑘 and 𝑃𝑝 ∩ 𝑃𝑞 , where 𝑟 , 𝑝
and 𝑞 are chosen from 𝑥 , 𝑦, 𝑧 and𝑤 , is equal to

𝑟
𝑖 𝑗𝑘
𝑝𝑞 =

�������
𝑟𝑖 𝑝𝑖 𝑞𝑖

𝑟 𝑗 𝑝 𝑗 𝑞 𝑗

𝑟𝑘 𝑝𝑘 𝑞𝑘

��������������
1 𝑝𝑖 𝑞𝑖

1 𝑝 𝑗 𝑞 𝑗

1 𝑝𝑘 𝑞𝑘

�������
. (5)

Proof. Let (𝑤, 𝑥,𝑦, 𝑧) be the coordinates of the intersection. These coordinates are barycentric and the intersection

lies on 𝑃𝑝 and 𝑃𝑞 , meaning 
1⊤

e⊤𝑝
e⊤𝑞



𝑤

𝑥

𝑦

𝑧


=


1

0

0

 ,
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Intersection of tetrahedra 11

where 1 is a column vector of length 4 with entries equal to 1 and e𝑝 is the 𝑝–th column of the 4 × 4 identity matrix.

Since it lies on the face between the vertices 𝑖 , 𝑗 and 𝑘 , these coordinates can be represented as
𝑤

𝑥

𝑦

𝑧


=


𝑤𝑖 𝑤 𝑗 𝑤𝑘

𝑥𝑖 𝑥 𝑗 𝑥𝑘

𝑦𝑖 𝑦 𝑗 𝑦𝑘

𝑧𝑖 𝑧 𝑗 𝑧𝑘


w,

for some vector w. These facts together give a matrix system for w:


1⊤

e⊤𝑝
e⊤𝑞



𝑤𝑖 𝑤 𝑗 𝑤𝑘

𝑥𝑖 𝑥 𝑗 𝑥𝑘

𝑦𝑖 𝑦 𝑗 𝑦𝑘

𝑧𝑖 𝑧 𝑗 𝑧𝑘


w =


1 1 1

𝑝𝑖 𝑝 𝑗 𝑝𝑘

𝑞𝑖 𝑞 𝑗 𝑞𝑘

 w =


1

0

0

 .
Using Cramer’s rule and minor determinant manipulation, the solution w is

w =
1�������

1 1 1

𝑝𝑖 𝑝 𝑗 𝑝𝑘

𝑞𝑖 𝑞 𝑗 𝑞𝑘

�������
©­­­«
�������
1 0 0

𝑝𝑖 𝑝 𝑗 𝑝𝑘

𝑞𝑖 𝑞 𝑗 𝑞𝑘

������� ,
�������
0 1 0

𝑝𝑖 𝑝 𝑗 𝑝𝑘

𝑞𝑖 𝑞 𝑗 𝑞𝑘

������� ,
�������
0 0 1

𝑝𝑖 𝑝 𝑗 𝑝𝑘

𝑞𝑖 𝑞 𝑗 𝑞𝑘

�������
ª®®®¬ .

The 𝑟–coordinate, which is one of𝑤 , 𝑥 , 𝑦 or 𝑧, is the inner product between w and (𝑟𝑖 , 𝑟 𝑗 , 𝑟𝑘 ). This is equivalent to the

form given in the statement of the lemma, after matrix transposition. □

As before, this intersection lies on 𝑌 if and only if its coordinates are non-negative in the remaining two directions.

As well, if its parent intersections from the previous generation have the same sign in one of those coordinates then its

sign is inherited. This becomes more complicated in this higher dimensional case as the intersection has two parent

pairs, both of which must be checked.

Take the example we considered earlier, intersecting 𝑋 ∩ 𝑃𝑥 with 𝑃𝑦 . In 𝑃𝑥 the two parents were indexed by 𝑖 𝑗 and 𝑖𝑘 .
Suppose they have different signs in the 𝑧–coordinate. As pointed out, we could have instead intersected 𝑋 ∩ 𝑃𝑦 with
𝑃𝑥 . Suppose in 𝑋 ∩ 𝑃𝑦 there are two intersections indexed by 𝑖 𝑗 and 𝑗𝑘 , which also gives an intersection in 𝑋 ∩ 𝑃𝑥 ∩ 𝑃𝑦
indexed by 𝑖 𝑗𝑘 . However, in this plane suppose these intersections have the same sign in the 𝑧–coordinate. Then the

intersection 𝑖 𝑗𝑘 in 𝑃𝑥 ∩ 𝑃𝑦 has the same sign in the 𝑧–coordinate as its parents in 𝑃𝑦 , even though its parents in 𝑃𝑥

have different signs.

Like the pairing of numerators from Table 2, this form of the intersection has a tripling of its numerators. Keeping 𝑖 ,

𝑗 and 𝑘 fixed one can alternate the roles of 𝑟 , 𝑝 and 𝑞 to give the same numerator up to a change in sign. This fixes the

position of the face 𝑖 𝑗𝑘 of 𝑋 with respect to the vertex of 𝑌 at 𝑃𝑝 ∩ 𝑃𝑞 ∩ 𝑃𝑟 , see Figure 3.
The denominators in this case are connected to the numerators of Table 2. One can use this fact to keep the algorithm

consistent with previous calculations. The following lemma gives this connection. However, the corollary that follows

combines this fact and the tripling of the numerators for a powerful relation between the signs of intersections’

coordinates. This relation is sufficient for the algorithm to be consistent, as we will show in Theorem 6.
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12 Conor McCoid and Martin J. Gander

Fig. 3. Intersections between faces of 𝑋 and lines 𝑃𝑝 ∩ 𝑃𝑞 are connected in triplets. Each red triangle represents the portion of a face
of 𝑋 that intersects three lines 𝑃𝑝 ∩ 𝑃𝑞 . The three blue planes represent faces of 𝑌 . A change in the sign of one coordinate causes two
other coordinates of two other intersections to change as well.

Lemma 5. Suppose the face 𝑖 𝑗𝑘 of 𝑋 intersects 𝑃𝑝 ∩ 𝑃𝑞 . Suppose sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) = sign(𝑝𝑘 ) and sign(𝑞𝑖 𝑗𝑝 ) ≠

sign(𝑞𝑖𝑘𝑝 ). Then

sign

©­­­«
�������
1 𝑞𝑖 𝑝𝑖

1 𝑞 𝑗 𝑝 𝑗

1 𝑞𝑘 𝑝𝑘

�������
ª®®®¬ = sign

(�����𝑞𝑖 𝑝𝑖

𝑞 𝑗 𝑝 𝑗

�����
)
.

Proof. By assumption 𝑞
𝑖 𝑗
𝑝 − 𝑞𝑖𝑘𝑝 has the same sign as 𝑞

𝑖 𝑗
𝑝 . We then investigate 𝑞

𝑖 𝑗
𝑝 − 𝑞𝑖𝑘𝑝 by expanding it:

𝑞
𝑖 𝑗
𝑝 − 𝑞𝑖𝑘𝑝 =

�����𝑞𝑖 𝑝𝑖

𝑞 𝑗 𝑝 𝑗

�����
𝑝 𝑗 − 𝑝𝑖

−

�����𝑞𝑖 𝑝𝑖

𝑞𝑘 𝑝𝑘

�����
𝑝𝑘 − 𝑝𝑖

=

�������
0 𝑞𝑖 𝑝𝑖

𝑝 𝑗 − 𝑝𝑖 𝑞 𝑗 𝑝 𝑗

𝑝𝑘 − 𝑝𝑖 𝑞𝑘 𝑝𝑘

�������
(𝑝 𝑗 − 𝑝𝑖 ) (𝑝𝑘 − 𝑝𝑖 )

=

−𝑝𝑖

�������
1 𝑞𝑖 𝑝𝑖

1 𝑞 𝑗 𝑝 𝑗

1 𝑞𝑘 𝑝𝑘

�������
(𝑝 𝑗 − 𝑝𝑖 ) (𝑝𝑘 − 𝑝𝑖 )

.

We now compare the signs of the two sides:

sign

(
𝑞
𝑖 𝑗
𝑝 − 𝑞𝑖𝑘𝑝

)
= sign(𝑝 𝑗 − 𝑝𝑖 ) ⊗ sign

(�����𝑞𝑖 𝑝𝑖

𝑞 𝑗 𝑝 𝑗

�����
)

= sign(𝑝 𝑗 − 𝑝𝑖 ) ⊗ sign(−𝑝𝑖 ) ⊗ sign(𝑝𝑘 − 𝑝𝑖 ) ⊗ sign

©­­­«
�������
1 𝑞𝑖 𝑝𝑖

1 𝑞 𝑗 𝑝 𝑗

1 𝑞𝑘 𝑝𝑘

�������
ª®®®¬ .

Cancelling known signs (sign(−𝑝𝑖 ) = sign(𝑝𝑘 − 𝑝𝑖 ) by assumption) we are left with the statement of the lemma. □

Corollary 1. Suppose sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) = sign(𝑝𝑘 ), sign(𝑞𝑖 𝑗𝑝 ) ≠ sign(𝑞𝑖𝑘𝑝 ) and sign(𝑟
𝑖 𝑗
𝑝 ) ≠ sign(𝑟 𝑖𝑘𝑝 ), then

sign(𝑟 𝑖 𝑗𝑘𝑝𝑞 ) ⊗ sign(𝑞𝑖 𝑗𝑘𝑝𝑟 ) = sign(𝑟 𝑖 𝑗𝑝 ) ⊗ sign(𝑞𝑖𝑘𝑝 ).
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1 indV=false(4,1); % indicators for vertices of V
2 Vmap=[6,2;6,1;1,4;1,3]; % edge/coord. combos of Y for each vertex of V
3 for vertex=1:4 % for each vertex of V
4 edge=Vmap(vertex,1); % pick an edge of Y that passes through this vertex
5 coord=Vmap(vertex,2); % pick the coord. that corresponds to this vertex on this edge
6 indj=1:4; indj=indj(S2(edge,:)); % pick out faces of X that intersect this edge of Y
7 if ~isempty(indj) && sR(coord,edge,indj(1))~=sR(coord,edge,indj(2)) % if int.s lie on opposite sides
8 indV(vertex)=true; % of vertex
9 end
10 end
11 W=[W,V(:,indV)]; % add vertices to P

Snippet 7. MATLAB code that determines if a vertex of𝑉 lies in𝑈 . The object S2 contains binary indicators of intersections between
faces of 𝑋 and edges of 𝑌 . The object sR contains signs of these intersections.

Proof. Take the quotient of 𝑟
𝑖 𝑗𝑘
𝑝𝑞 and 𝑞

𝑖 𝑗𝑘
𝑝𝑟 , which has the same sign as their product. Expand and use Lemma 5:

sign

(
𝑟
𝑖 𝑗𝑘
𝑝𝑞

𝑞
𝑖 𝑗𝑘
𝑝𝑟

)
= sign

©­­­­­­­­­­­«

�������
𝑟𝑖 𝑝𝑖 𝑞𝑖

𝑟 𝑗 𝑝 𝑗 𝑞 𝑗
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=− sign(𝑟 𝑖 𝑗𝑝 ) ⊗ sign(𝑞𝑖 𝑗𝑝 ) = sign(𝑟 𝑖 𝑗𝑝 ) ⊗ sign(𝑞𝑖𝑘𝑝 ),

which is equivalent to the statement of the corollary. □

Let us note briefly that there is no equivalent of the straight line principle, see Section 3.2.1, for intersections between

faces of 𝑋 and edges of 𝑌 . All intersections that lie on the plane between three vertices of 𝑋 are already consistent due

to Corollary 1.

Code for sign determinations of these intersections appears very similar to Snippet 4. The only major difference

is that the inheritance and paired sign checks must be repeated for both of the other intersections in the triple. The

reverse transformation can be implemented in identical fashion to Snippet 5.

3.4 Vertices of 𝑌 that lie inside 𝑋

Every pair of planes 𝑃𝑝 ∩ 𝑃𝑞 intersects both remaining planes. At each intersection is a vertex of 𝑌 . There are either

zero or two intersections in 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 . Each has an 𝑟–coordinate, 𝑟
𝑖 𝑗𝑘
𝑝𝑞 and 𝑟

𝑖 𝑗𝑙
𝑝𝑞 . If sign(𝑟

𝑖 𝑗𝑘
𝑝𝑞 ) ≠ sign(𝑟 𝑖 𝑗𝑙𝑝𝑞 ) then the

intersection 𝑃𝑝 ∩ 𝑃𝑞 ∩ 𝑃𝑟 lies inside 𝑋 . As this is a vertex of 𝑌 the corresponding vertex of 𝑉 lies inside𝑈 .

The vertex corresponds to the plane of 𝑌 that is not in the intersection. For example, if the vertex is at 𝑃𝑤 ∩ 𝑃𝑦 ∩ 𝑃𝑧
then the only non-zero coordinate is 𝑥 , which must equal one. Using equation (3) gives the position as v0 + v1, as
expected.

Each vertex of 𝑌 has three edges extending from it. This test can therefore occur up to three times. If the algorithm

is consistent it only needs to occur once. The remaining edges will then agree on the results.

Snippet 7 provides MATLAB code for determining if a vertex of 𝑌 lies inside 𝑋 . It requires a list of those edges of 𝑌

that intersect faces of 𝑋 and the signs of those intersections.
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14 Conor McCoid and Martin J. Gander

4 Algorithm

We present pseudocode for the algorithm in Algorithm 2. We explain each step of the algorithm.

Algorithm 2 Tetrahedral intersection algorithm

1: Transform 𝑉 → 𝑌 and𝑈 → 𝑋 , see equation (1)

2: for all vertices x𝑖 of 𝑋 do
3: if sign(𝑝𝑖 ) = 1 for all coordinates 𝑝 then
4: u0 + u𝑖 ∈ 𝑉
5: end if
6: end for
7: for all planes 𝑃𝑝 do
8: for all pairs of vertices such that sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) do
9: Flag the edge 𝑖 𝑗 as having an intersection with plane 𝑃𝑝
10: end for
11: end for
12: for each intersection do
13: Determine the signs of its coordinates, see Lemma 2 and Section 3.2.1

14: if all coordinates are non-negative then
15: Transformed intersection lies in 𝑌 , see equation (3)

16: end if
17: end for
18: Repeat lines 7-17 for all lines 𝑃𝑝 ∩ 𝑃𝑞 , see Lemma 4 and Corollary 1

19: for all vertices 𝑃𝑝 ∩ 𝑃𝑞 ∩ 𝑃𝑟 do
20: if sign(𝑟 𝑖 𝑗𝑘𝑝𝑞 ) ≠ sign(𝑟 𝑖 𝑗𝑙𝑝𝑞 ) then
21: Vertex lies in 𝑋

22: end if
23: end for

Line 1 Perform a change of coordinates. The coordinates of 𝑌 are already known, while the coordinates of 𝑋 are

found by solving equation (1), see Section 2 and Snippet 1.

Lines 2-6 Find which vertices of 𝑋 lie within 𝑌 . Using the barycentric coordinates, these vertices have entirely

non-negative coordinates, see Section 3.1 and Snippet 2.

Lines 7-11 Find which edges of 𝑋 intersect the planes 𝑃𝑝 , see Snippet 3.

Lines 12-17 Determine the signs of the intersections found in the previous step, either through inheritance, Lemma

2, the straight line principle, or direct calculation, see Section 3.2 and Snippets 4 and 6. Section 4.1 that follows

discusses these sign determinations further. If all coordinates of an intersection are non-negative, calculate them

and reverse the change of coordinates using equation (3), see Snippet 5.

Line 18 Find which faces of 𝑋 intersect the lines 𝑃𝑝 ∩ 𝑃𝑞 . Determine the signs of these coordinates through

inheritance, Corollary 1, or direct calculation. If all coordinates of an intersection are non-negative, calculate

them and use equation (3) to reverse the transformation. See Sections 3.3 and 4.1 for discussion.

Lines 19-23 For each vertex choose one line 𝑃𝑝 ∩ 𝑃𝑞 that extends from it. Compare sign(𝑟 𝑖 𝑗𝑘𝑝𝑞 ) and sign(𝑟 𝑖 𝑗𝑙𝑝𝑞 ), the
𝑟–coordinate of the two intersections along this line. If they differ then the vertex lies in 𝑋 , see Section 3.4 and

Snippet 7.
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Intersection of tetrahedra 15

Direct calculation of intersection coordinates can be achieved through equations (2) and (5). However, these are by

no means the only options. Any method that finds the intersection between two lines can be used to calculate these

coordinates. This aspect of the code should be considered modular.

Much work in Section 3 has been to ensure the algorithm produces a consistent result. With this extensive theory in

mind we prove Algorithm 2 does in fact satisfy this high bar of robustness.

Theorem 6. Algorithm 2 is consistent with respect to shape.

Proof. For the algorithm to be consistent all calculations on the tetrahedron 𝑋 must be compatible with one another

geometrically. We will consider each calculation step by step and show they agree with one another on the fundamental

geometry.

The first step of the algorithm on 𝑋 is determining the signs of the four coordinates of x𝑖 for all 𝑖 for the purposes of
finding which vertices of 𝑋 lie within 𝑌 . As this is the first step there are no previous calculations with which to be

compatible. Moreover, each coordinate and vertex are independent and so the calculations cannot be inconsistent with

one another.

Next are the calculations of the intersections between 𝑋 and the planes 𝑃𝑝 . An intersection with 𝑃𝑝 is found if and

only if sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) for some pair 𝑖 and 𝑗 . This ensures these calculations are consistent with the previous

determinations of signs.

For these calculations to be consistent with one another they must agree at the points of their intersections. That is,

if there is an intersection 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 then intersecting 𝑃𝑞 with 𝑋 ∩ 𝑃𝑝 must produce the same results as intersecting

𝑃𝑝 with 𝑋 ∩ 𝑃𝑞 . Put succinctly, for every pair of intersections in 𝑃𝑝 indexed by 𝐽1 and 𝐽2 such that sign(𝑞 𝐽1𝑝 ) ≠ sign(𝑞 𝐽2𝑝 )
there exists a pair of intersections in 𝑃𝑞 indexed by 𝐽3 and 𝐽4 such that sign(𝑝 𝐽3𝑞 ) ≠ sign(𝑝 𝐽4𝑞 ). The sets 𝐽𝑘 contain two

elements that denote the two vertices on the edge of 𝑋 that intersects the given plane. For example, if the edge between

x0 and x1 intersects 𝑃𝑝 , then 𝐽1 = 01.

We may assume the two edges of 𝑋 ∩ 𝑃𝑝 , indexed by 𝐽1 and 𝐽2, share a vertex as this restricts the intersection in

𝑃𝑝 ∩ 𝑃𝑞 to the boundary of 𝑋 . Any interior intersections may be ignored. Without loss of generality suppose 𝐽1 and

𝐽2 have two vertices each from amongst the three x0, x1 and x2. Firstly, since sign(𝑞 𝐽1𝑝 ) ≠ sign(𝑞 𝐽2𝑝 ) at least one of 𝑞0,
𝑞1 or 𝑞2 has a different sign than the others. Otherwise, the signs of the intersections would both be inherited from

their parents and they would both be equal to one another, see left of Figure 4. Without loss of generality, suppose

sign(𝑞0) ≠ sign(𝑞1) = sign(𝑞2). Then there exist intersections with 𝑝–coordinates 𝑝01𝑞 and 𝑝02𝑞 . It remains to show these

have different signs.

The sets 𝐽𝑘 are then four combinations of two elements from a set of three. By the pigeonhole principle two of them

are identical. Without loss of generality, suppose 𝐽1 = 01. Lemma 2 gives the following relation between the signs of the

coordinates:

sign(𝑞01𝑝 ) ⊗ sign(𝑝01𝑞 ) = sign(𝑞0) ⊗ sign(𝑝1).

There are then two cases to consider: either 𝐽2 = 𝐽3 = 02 or 𝐽3 ≠ 𝐽2 = 12. In the former, 𝑞02𝑝 and 𝑝02𝑞 have the same

relationship as 𝑞01𝑝 and 𝑝01𝑞 , see centre of Figure 4. Thus,

sign(𝑝02𝑞 ) = sign(𝑞0) ⊗ sign(𝑝2) ⊗ sign(𝑞02𝑝 )

≠ sign(𝑞0) ⊗ sign(𝑝1) ⊗ sign(𝑞01𝑝 ) = sign(𝑝01𝑞 ) .
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16 Conor McCoid and Martin J. Gander

𝑃𝑞

𝑃𝑝

0

1

2

𝑞01𝑝

𝑞02𝑝
𝑃𝑞

𝑃𝑝

0

1

2

𝑞01𝑝

𝑞02𝑝

𝑝02𝑞 𝑝01𝑞 𝑃𝑞

𝑃𝑝

0

1

2

𝑞01𝑝

𝑞12𝑝

𝑝02𝑞 𝑝01𝑞

Fig. 4. Configurations of two intersections 𝑞 𝐽1𝑝 and 𝑞 𝐽2𝑝 with respect to two planes 𝑃𝑝 and 𝑃𝑞 .

In the latter, sign(𝑞12𝑝 ) is inherited from 𝑞2 and 𝑞1 while sign(𝑝02𝑞 ) is inherited from 𝑝0 and 𝑝2, see right of Figure 4. Then

sign(𝑝02𝑞 ) = sign(𝑝0) ≠ sign(𝑝1) = sign(𝑞0) ⊗ sign(𝑞01𝑝 ) ⊗ sign(𝑝01𝑞 )

= sign(𝑞1) ⊗ sign(𝑞12𝑝 ) ⊗ sign(𝑝01𝑞 ) = sign(𝑝01𝑞 ) .

In both cases, the two coordinates have different signs. The four intersections, indexed by 𝐽1, 𝐽2, 𝐽3 and 𝐽4, form a cross

around the intersection at 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 , which is itself indexed by the three vertices of 𝑋 that form the relevant face of

𝑋 , 𝐽1 ∪ 𝐽2 = 𝐽3 ∪ 𝐽4 = 012.

We next find the intersections between 𝑋 and 𝑃𝑝 ∩ 𝑃𝑞 . Since the calculations of 𝑋 ∩ 𝑃𝑝 and 𝑋 ∩ 𝑃𝑞 are consistent, we
may consider 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 as the intersection of 𝑋 ∩ 𝑃𝑝 with 𝑃𝑞 . By Proposition 1 there are either zero, three or four

intersections in 𝑋 ∩ 𝑃𝑝 . If there are zero then certainly 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 is empty as well. If there are three then by the same

reasoning behind Proposition 1 there are either zero or two intersections in 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 , see [15] for further discussion.
If there are four intersections and 𝑋 ∩ 𝑃𝑝 is convex then there are also either zero or two intersections in 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 ,

since a line can intersect a convex polygon along either none or two of its edges. However, if the algorithm fails to

maintain convexity in floating-point arithmetic, then there may be four intersections due to twisting of the polygon’s

edges. We suppose for the moment that convexity is maintained and will consider the non-convex case later in the

proof.

For the edges 𝑋 ∩𝑃𝑝 ∩𝑃𝑞 to be consistent with one another they must agree at their intersection, just as in the case of

𝑋 ∩𝑃𝑝 . The statement to prove in this case is then: For every pair of intersections (𝐽1, 𝐽2) such that sign(𝑟 𝐽1𝑝𝑞) ≠ sign(𝑟 𝐽2𝑝𝑞)
there exist two pairs (𝐽3, 𝐽4) and (𝐽5, 𝐽6) such that sign(𝑞 𝐽3𝑝𝑟 ) ≠ sign(𝑞 𝐽4𝑝𝑟 ) and sign(𝑝 𝐽5𝑞𝑟 ) ≠ sign(𝑝 𝐽6𝑞𝑟 ).

The pair (𝐽1, 𝐽2) can be arrived at from two ways: either they are intersections of 𝑋 ∩ 𝑃𝑝 with 𝑃𝑞 , or those of 𝑋 ∩ 𝑃𝑞
with 𝑃𝑝 . We consider the former. Then there are two pairs (𝐾1, 𝐾2) and (𝐾3, 𝐾4) such that

sign(𝑞𝐾1𝑝 ) ≠ sign(𝑞𝐾2𝑝 ), sign(𝑞𝐾3𝑝 ) ≠ sign(𝑞𝐾4𝑝 ),

sign(𝑞𝐾1𝑝 ) = sign(𝑞𝐾4𝑝 ), sign(𝑞𝐾2𝑝 ) = sign(𝑞𝐾3𝑝 ),

𝐾1 ∪ 𝐾2 =𝐽1, 𝐾3 ∪ 𝐾4 =𝐽2 .

Note it is possible that 𝐾2 = 𝐾3 or 𝐾1 = 𝐾4 but not both simultaneously.
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Fig. 5. Convex configurations of 𝑋 ∩ 𝑃𝑝 . The dashed lines represent zero or one edges, depending on how many intersections have
been found for 𝑋 ∩ 𝑃𝑝 .

Since sign(𝑟 𝐽1𝑝𝑞) ≠ sign(𝑟 𝐽2𝑝𝑞) at least one of the intersections in 𝑋 ∩ 𝑃𝑝 has a different sign than the others in the

𝑟–coordinate. There are a limited number of convex configurations satisfying these conditions. These are presented in

Figure 5. In all cases there are two intersections between 𝑋 ∩ 𝑃𝑝 and 𝑃𝑟 , indexed by 𝐽3 = 𝐾2 ∪ 𝐾3 and 𝐽4 = 𝐾1 ∪ 𝐾4.

If the sets 𝐽3 and 𝐽4 are not identical to 𝐽1 and 𝐽2 then the edge between 𝐾1 and 𝐾2 does not intersect 𝑃𝑟 , neither

does the one between 𝐾3 and 𝐾4. Then sign(𝑟 𝐽1𝑝𝑞) = sign(𝑟𝐾1𝑝 ) = sign(𝑟𝐾2𝑝 ) and likewise for 𝐽2. Moreover, sign(𝑞 𝐽3𝑝𝑟 ) =
sign(𝑞𝐾1𝑝 ) = sign(𝑞𝐾4𝑝 ) and likewise for 𝐽4. This configuration is represented in the left of Figure 5.

Suppose instead 𝐽4 = 𝐽1, then sign(𝑟𝐾1𝑝 ) ≠ sign(𝑟𝐾2𝑝 ). Then we may use Corollary 1 to establish

sign(𝑟 𝐽1𝑝𝑞) ⊗ sign(𝑞 𝐽1𝑝𝑟 ) = sign(𝑟𝐾2𝑝 ) ⊗ sign(𝑞𝐾1𝑝 ) .

If 𝐽3 = 𝐽2 also, then sign(𝑟𝐾4𝑝 ) ≠ sign(𝑟𝐾3𝑝 ) and, using Corollary 1 again,

sign(𝑞 𝐽2𝑝𝑟 ) = sign(𝑟 𝐽2𝑝𝑞) ⊗ sign(𝑟𝐾3𝑝 ) ⊗ sign(𝑞𝐾4𝑝 )

≠ sign(𝑟 𝐽1𝑝𝑞) ⊗ sign(𝑟𝐾2𝑝 ) ⊗ sign(𝑞𝐾1𝑝 ) = sign(𝑞 𝐽1𝑝𝑟 ).

This configuration is represented in the centre of Figure 5.

Finally, suppose 𝐽4 = 𝐽1 and 𝐽2 ≠ 𝐽3. Then

sign(𝑞 𝐽3𝑝𝑟 ) = sign(𝑞𝐾1𝑝 ) = sign(𝑟𝐾2𝑝 ) ⊗ sign(𝑟 𝐽1𝑝𝑞) ⊗ sign(𝑞 𝐽1𝑝𝑟 )

≠ sign(𝑟𝐾3𝑝 ) ⊗ sign(𝑟 𝐽2𝑝𝑞) ⊗ sign(𝑞 𝐽1𝑝𝑟 ) = sign(𝑞 𝐽1𝑝𝑟 ) .

This configuration is represented in the right of Figure 5.

We have so far assumed the intersection in 𝑋 ∩ 𝑃𝑝 is convex. However, under numerical error this may fail for

particularly pathological examples. These cases may be recognized by the fact they indicate four intersections are to

be calculated along the lines of either 𝑃𝑝 ∩ 𝑃𝑞 or 𝑃𝑝 ∩ 𝑃𝑟 . These non-convex configurations are presented in Figure 6.

Other convexity issues are resolved by the straight line principle, see Section 3.2.1.

The following subroutine will reduce these non-convex configurations to their convex counterparts. Any other

non-convex configurations do not affect consistency.

• For those lines 𝑃𝑝 ∩𝑃𝑞 that have four intersections, take the smallest 𝑟
𝐽1
𝑝𝑞 and largest 𝑟

𝐽2
𝑝𝑞 and discard the remaining

two.
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Fig. 6. Non-convex configurations of 𝑋 ∩ 𝑃𝑝 . These can only occur with four intersections in 𝑋 ∩ 𝑃𝑝 and result in four intersections
in either or both of 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑟 and 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞 .

• For any other line 𝑃𝑝 ∩ 𝑃𝑟 calculate additional intersections between this line and the remaining two edges of

𝑋 ∩ 𝑃𝑝 not considered, which must be done using equation (4). Make sure these intersections inherit their signs

if applicable. Again take the smallest 𝑞
𝐽3
𝑝𝑟 and largest 𝑞

𝐽4
𝑝𝑟 and discard the rest.

The proof of consistency for these configurations is identical to the one presented above, reversing the roles of 𝐾3 and

𝐾4.

This proves the existence of the pair (𝐽3, 𝐽4) such that sign(𝑞 𝐽3𝑝𝑟 ) ≠ sign(𝑞 𝐽4𝑝𝑟 ). For the existence of the pair (𝐽5, 𝐽6),
reverse the roles of 𝑝 and 𝑞. This gives consistency of this step of the algorithm.

This means that if a vertex of 𝑌 , the intersection of 𝑃𝑝 , 𝑃𝑞 and 𝑃𝑟 , is surrounded by two intersections in 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑞
then it is surrounded by four more in 𝑋 ∩ 𝑃𝑝 ∩ 𝑃𝑟 and 𝑋 ∩ 𝑃𝑞 ∩ 𝑃𝑟 . The final step, determining if a vertex of 𝑌 is inside

𝑋 , is then consistent with all previous calculations. □

The following corollary shows this idea of consistency is equivalent to robustness, as long as each individual

calculation, which includes coordinate transformations and line-line intersections, is robust. As some of these subroutines

are modular in Algorithm 2, we will assume their robustness.

Corollary 2. Suppose the calculated position of vertices after the coordinate transformation and intersections between

edges and faces is accurate up to a distance of 𝛿 . Then the volume of the intersection calculated by Algorithm 2 differs

from the volume of the exact intersection by at most


𝐴−1



8𝛿 , where the matrix 𝐴 defines the affine transformation of the

algorithm.

Proof. Let 𝑍 be the exact intersection between the reference tetrahedron 𝑌 and the arbitrary tetrahedron 𝑋 , with

corners z𝑖 . Since Algorithm 2 is consistent with respect to shape, the intersection calculated by the algorithm is a

polyhedron, 𝑍 + Δ𝑍 , with corners represented by z𝑖 + Δz𝑖 .
The difference between these two polyhedra, Δ𝑍 , is the union of a finite number of smaller polyhedra. Specifically,

Δ𝑍 is the union of at most 8 polyhedra, as 𝑍 has at most 8 sides. Each of these smaller polyhedra has at least one side of

length |Δz𝑖 | ≤ 𝛿 by assumption. All other side lengths are less than or equal to 1, as 𝑍 + Δ𝑍 lies inside 𝑌 , so the total

volume of Δ𝑍 is less than or equal to 8𝛿 .

The polyhedra Δ𝑍 must be transformed back into the original coordinates using the affine transformation 𝐴−1 (z𝑖 +
Δz𝑖 ) − b. This scales the volume of Δ𝑍 by



𝐴−1


. □
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4.1 Practical concerns of determining signs

There are four ways to determine the sign of a coordinate for a given intersection:

• the sign is inherited from the previous generation;

• the sign is linked either via Lemma 2 or Corollary 1 to the sign of another coordinate on the same edge or face of

𝑋 ;

• the sign is enforced via the straight line principle, or;

• the sign is found through direct calculation.

Inheritance can only occur if the edge or face of 𝑋 does not have the maximum number of intersections with

the planes of 𝑌 . If an edge of 𝑋 intersects the plane 𝑃𝑝 but not the plane 𝑃𝑞 then sign(𝑞𝑖 𝑗𝑝 ) is inherited from 𝑞𝑖 and

𝑞 𝑗 , which must have equal sign in the 𝑞–coordinate. If a face of 𝑋 intersects the line 𝑃𝑝 ∩ 𝑃𝑞 but not 𝑃𝑝 ∩ 𝑃𝑟 then
sign(𝑟 𝑖 𝑗𝑘𝑝𝑞 ) = sign(𝑟 𝑖 𝑗𝑝 ) = sign(𝑟 𝑖𝑘𝑝 ).

This means we only use Lemma 2 and Corollary 1 when the sign tests show different signs for multiple coordinates.

That is, we use Lemma 2 only when sign(𝑝𝑖 ) ≠ sign(𝑝 𝑗 ) and sign(𝑞𝑖 ) ≠ sign(𝑞 𝑗 ). We use Corollary 1 only when

sign(𝑞𝑖 𝑗𝑝 ) ≠ sign(𝑞𝑖𝑘𝑝 ), sign(𝑟
𝑖 𝑗
𝑝 ) ≠ sign(𝑟 𝑖𝑘𝑝 ), sign(𝑝𝑖𝑘𝑞 ) ≠ sign(𝑝 𝑗𝑘𝑞 ) and sign(𝑟 𝑖𝑘𝑞 ) ≠ sign(𝑟 𝑗𝑘𝑞 ). Since the algorithm has

been shown to be consistent, it would also be that sign(𝑝𝑖 𝑗𝑟 ) ≠ sign(𝑝 𝑗𝑘𝑟 ) and sign(𝑞𝑖 𝑗𝑟 ) ≠ sign(𝑞 𝑗𝑘𝑟 ).
If we know a set of intersection coordinates can be connected then it remains to find one of their signs through direct

calculation. This leaves direct calculation as a last resort, though necessary if we are to use Lemma 2 and Corollary 1.

The straight line principle is only employed if an edge of 𝑋 intersects at least three planes 𝑃𝑝 , and direct calculations

have returned the middle of the three intersections.

Algorithm 3 Subroutine for lines 12-17

1: for all edges 𝑖 𝑗 of 𝑋 do ⊲ all faces 𝑖 𝑗𝑘 . . .

2: for all 𝑃𝑝 such that 𝑖 𝑗 is flagged, see line 9 of Algorithm 2, do ⊲ all 𝑃𝑝 ∩ 𝑃𝑟 . . .
3: for all remaining coordinates 𝑞 do
4: if 𝑖 𝑗 has not been flagged for the plane 𝑃𝑞 then ⊲ . . . for the line 𝑃𝑝 ∩ 𝑃𝑞
5: sign(𝑞𝑖 𝑗𝑝 ) is inherited ⊲ sign(𝑞𝑖 𝑗𝑘𝑝𝑟 ) . . .
6: else if 𝑝𝑖 𝑗𝑞 has been calculated then ⊲ 𝑟

𝑖 𝑗𝑘
𝑝𝑞 . . .

7: sign(𝑞𝑖 𝑗𝑝 ) is found through Lemma 2 ⊲ . . .Corollary 1

8: else
9: 𝑞

𝑖 𝑗
𝑝 must be calculated, see equation (2) ⊲ . . . Lemma 4

10: end if
11: end for
12: if all coordinates 𝑞𝑖 𝑗𝑝 are non-negative then
13: Calculate any remaining coordinates, see equation (2) ⊲ . . . Lemma 4

14: Apply the reverse transformation, see equation (3)

15: end if
16: if this edge has more than two intersections then ⊲ Omitted

17: if sign(𝑞𝑖 𝑗𝑝 ) ≠ sign(𝑞𝑖 ), while sign(𝑟 𝑖 𝑗𝑝 = sign(𝑟𝑖 ) for all 𝑟 ≠ 𝑞, 𝑝 then
18: Set sign(𝑟 𝑖 𝑗𝑞 ) = sign(𝑟 𝑖 𝑗𝑝 ), see Section 3.2.1

19: end if
20: end if
21: end for
22: end for
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Calculated Reassessed

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

> 0, < 1 > 0, < 1 > 0, < 1 No change

< 0 > 0, < 1 > 0, < 1 0 1/2 1/2

< 0 > 1 < 1 0 1 0

< 0 > 1 > 1 0 1/2 1/2

Table 4. Possible implementation of guardrails when the calculated position of the intersection between a face of 𝑌 and an edge of 𝑋
disagrees with its determined signs.

We present a subroutine for lines 12-17 of Algorithm 2 as Algorithm 3. It identifies when one can use inheritance

or Lemma 2, or when direct calculation is necessary. The equivalent subroutine for line 18 is nearly identical with

minor alterations. These alterations are noted as comments in Algorithm 3. Note, however, that both inheritance and

applicability of Corollary 1 need to be checked for both the lines 𝑃𝑝 ∩ 𝑃𝑞 and 𝑃𝑟 ∩ 𝑃𝑞 .

4.1.1 Guardrails. Since direct calculation is used as a last resort to determine the signs of the intersections, it is possible

that a particular intersection is found to lie within 𝑌 based on its signs but when calculating its position it is placed

outside 𝑌 . This can most easily occur when an edge of one tetrahedron lies in the plane of a face of the second.

This is a numerical error in the calculation of the intersection and can be guarded against in a number of ways.

The most straightforward course of action is to implement guardrails. If an intersection is determined to lie within 𝑌 ,

then all of its coordinates must be less than or equal to 1 and greater than or equal to 0. If the calculation of one of its

coordinates is greater than 1, then the guardrails should limit the value to 1. Likewise, if the calculation returns a value

less than 0, then the guardrails should enforce a value of 0.

When implementing guardrails, it is important to remember that the coordinates are barycentric and must therefore

sum to 1. Remember also that any intersection possesses coordinates equal to 0, as they lie on a particular face or edge

of 𝑌 . For intersections on edges of 𝑌 , there are only two non-zero coordinates, and so if guardrails change one value to

1, then the other must be changed to 0, and vice versa.

For intersections on faces of 𝑌 , there is additional freedom as there are three non-zero coordinates. One can choose

any point along the projection of the edge of 𝑋 onto the face of 𝑌 , though this will require additional calculations. A

less sophisticated but faster implementation would be to choose an arbitrary point along an edge of 𝑌 . Table 4 gives

one possible set of choices of such arbitrary points.

5 Examples

5.1 Combinatorial example

Much of the mathematics that ensures the robustness of the algorithm is combinatorial in nature. Let us consider a

particular example and see how the combinatorics of the algorithm play out.

Suppose the vertices of 𝑋 have coordinates as dictated by Table 5. This can occur if 𝑋 resembles Figure 7, for example.

We run through the sign tests performed for 𝑃𝑥 :

sign(𝑥0) = sign(𝑥1) =⇒ sign(𝑥01𝑝 ) = +, sign(𝑥0) ≠ sign(𝑥3) =⇒ ∃𝑞03𝑥 ,

sign(𝑥0) = sign(𝑥2) =⇒ sign(𝑥02𝑝 ) = +, sign(𝑥1) ≠ sign(𝑥3) =⇒ ∃𝑞13𝑥 ,

sign(𝑥1) = sign(𝑥2) =⇒ sign(𝑥12𝑝 ) = +, sign(𝑥2) ≠ sign(𝑥3) =⇒ ∃𝑞23𝑥 .
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𝑤 𝑥 𝑦 𝑧

0 + + + +

1 + + + +

2 + + + -

3 + - - -

Table 5. Coordinates of the combinatorial example. Since we are considering only the combinatorics the only important aspect of
each coordinate is whether it is non-negative.

𝑥

𝑦

𝑧

0

1

2

3

𝑃𝑧

Fig. 7. Geometric example that could give rise to the combinatorial example found in Table 5. The plane 𝑃𝑧 and the intersection
𝑋 ∩ 𝑃𝑧 are shown to give perspective.

The same sign tests are also performed for 𝑃𝑦 and 𝑃𝑧 . No sign tests are required for 𝑃𝑤 as all coordinates are positive

in this direction, indicating no intersections with 𝑃𝑤 . The sign tests indicate ten intersections, three in 𝑃𝑥 , the same

number in 𝑃𝑦 and four in 𝑃𝑧 . These tests also show some of these intersections have signs inherited from the vertices.

The flags from line 9 of Algorithm 2 can be summarized as

𝑆 =


0 0 0 0 0 0

0 0 1 0 1 1

0 0 1 0 1 1

0 1 1 1 1 0


.

The rows correspond to the planes 𝑃𝑤 , 𝑃𝑥 , 𝑃𝑦 and 𝑃𝑧 , respectively, while the columns correspond to the edges 01, 02, 03,

12, 13 and 23, respectively.

Table 6 begins with the information obtained from the sign tests in parentheses. Note there are no pairs for these

coordinates to use Lemma 2. Now we must compute some of the remaining coordinates. We start with 𝑦
𝐽
𝑥 . We may now
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𝑥 𝑦 𝑧

03 - +

𝑃𝑥 13 + +

23 - (-)

03 [+] +

𝑃𝑦 13 [-] +

23 [+] (-)

02 (+) (+)

𝑃𝑧 03 [-] [-]

12 (+) (+)

13 [-] [-]

Table 6. Intersections between edges of 𝑋 and planes 𝑃𝑝 . Parentheses denote the sign has been inherited from Table 5, while square
brackets indicate the sign has been made to satisfy Lemma 2 from a previous calculation.

use these along with Lemma 2 to find the signs of the 𝑥–coordinates in 𝑃𝑦 :

sign(𝑥03𝑦 ) = sign(𝑥0) ⊗ sign(𝑦3) ⊗ sign(𝑦03𝑥 ) = (+)(−)(−) = +,

sign(𝑥13𝑦 ) = sign(𝑥1) ⊗ sign(𝑦3) ⊗ sign(𝑦13𝑥 ) = (+)(−)(+) = −,

sign(𝑥23𝑦 ) = sign(𝑥2) ⊗ sign(𝑦3) ⊗ sign(𝑦23𝑥 ) = (+)(−)(−) = +.

These signs are added to Table 6 and indicated with square brackets. We then compute 𝑧
𝐽
𝑥 and 𝑧

𝐽
𝑦 and again use Lemma

2 to complete the table. See Figure 8 for a visual representation of these intersections.

Four of the intersections have only non-negative coordinates, meaning they lie within 𝑌 and form a corner of 𝑋 ∩ 𝑌 .
This identifies eight coordinates that need to be calculated, three of which have already been found. That leaves 12

unnecessary coordinates, of which we calculated four, ultimately avoiding the calculation of eight coordinates.

A small aside: The intersection between the edge 03 and 𝑃𝑥 is the middle of three intersections along this edge. This

means the sign of 𝑧03𝑦 should have been obtained through the straight line principle, see Section 3.2.1. This would not

have changed the number of coordinates we needed to calculate, as 𝑧03𝑦 is positive.

We then perform the sign tests for 𝑃𝑥 ∩ 𝑃𝑦 :

sign(𝑦03𝑥 ) ≠ sign(𝑦13𝑥 ) =⇒ ∃𝑧013𝑥𝑦 ,

sign(𝑦03𝑥 ) = sign(𝑦23𝑥 ) =⇒ sign(𝑦023𝑥𝑧 ) = −,

sign(𝑦13𝑥 ) ≠ sign(𝑦23𝑥 ) =⇒ ∃𝑧123𝑥𝑦 .

We repeat these tests five more times, once for each combination of 𝑃𝑝 ∩ 𝑃𝑞 and 𝑃𝑞 ∩ 𝑃𝑝 . We find two intersections for

each line, three of which have inherited their signs. The information is collected in Table 7.

Now we need only calculate one of the remaining coordinates, for example 𝑧123𝑥𝑦 . Using Lemma 5 we can find the

signs of the other coordinates:

sign(𝑦123𝑥𝑧 ) = sign(𝑧13𝑥 ) ⊗ sign(𝑦23𝑥 ) ⊗ sign(𝑧123𝑥𝑦 ) = (+)(−)(−) = +,

sign(𝑥123𝑦𝑧 ) = sign(𝑧13𝑦 ) ⊗ sign(𝑥23𝑦 ) ⊗ sign(𝑧123𝑥𝑦 ) = (+)(+)(−) = −.

The two coordinates along each line have different signs, meaning the vertex of 𝑌 at their intersection lies inside 𝑋 .

This identifies the last four corners of the intersection 𝑋 ∩ 𝑌 : the intersection 013 in 𝑃𝑥 ∩ 𝑃𝑦 , 123 in 𝑃𝑥 ∩ 𝑃𝑧 , 023 in
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𝑦

𝑧

𝑥

𝑧

𝑥𝑦

𝑃𝑥 𝑃𝑦

𝑃𝑧

03

03

13

13

23

23

0212

0313

013

123

123

023

013

123

123

023

023

023123

123

Fig. 8. The planes 𝑃𝑥 , 𝑃𝑦 and 𝑃𝑧 and their intersections. Those parts of the planes that are faces of 𝑌 are shaded in blue.

𝑥 𝑦 𝑧

𝑃𝑥 ∩ 𝑃𝑦 013 (+)

123 -

𝑃𝑥 ∩ 𝑃𝑧 023 (-)

123 [+]

𝑃𝑦 ∩ 𝑃𝑧 023 (+)

123 [-]

Table 7. Intersections between faces of 𝑋 and lines 𝑃𝑝 ∩ 𝑃𝑞 . Parentheses denote the sign has been inherited from Table 6, while
square brackets indicate the sign has been made to satisfy Corollary 1 from a previous calculation.

𝑃𝑦 ∩ 𝑃𝑧 and the vertex of 𝑌 . The final intersection is presented in Figure 9, minus the two vertices of 𝑋 found to lie

within 𝑌 , x0 and x1.

5.2 Numerical example

Let us now consider a numerical example to compare the accuracy and efficiency of Algorithm 2 against its predecessor

PANG and the Sutherland-Hodgman algorithm [19]. We take two tetrahedra 𝑈 and 𝑉 whose coordinates depend on an

angle 𝛼 which dictates the aspect ratio of𝑉 . The coordinates of the tetrahedra are presented in Table 8. The tetrahedron
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𝑥𝑦

𝑧

v0

12 02

03

13

013

023123

Fig. 9. The final intersection of 𝑋 ∩𝑌 on the boundary of 𝑌 . To complete the intersection take the two vertices x0 and x1 that are
found to lie within 𝑌 .

𝑉 2𝑈

𝑥 0 0 0 cos(𝛼) cos(𝛼/2) cos(𝛼/2 + 2𝜋/3) cos(𝛼/2 + 4𝜋/3) 0

𝑦 0 0 1 sin(𝛼) sin(𝛼/2) sin(𝛼/2 + 2𝜋/3) sin(𝛼/2 + 4𝜋/3) 0

𝑧 0 1 0 0 0 0 0 1

Table 8. Coordinates of the clipping and subject tetrahedra. The coordinates of𝑈 must be halved.

𝑉 widens with angle 𝛼 , while𝑈 rotates such that the intersection is always symmetric along the plane down the centre

of 𝑉 .

The tetrahedra are plotted in Figure 10 for 𝛼 = 𝜋/3 and 3𝜋/4. The intersection is shaped like a pyramid, with a

quadrilateral base and an apex where a vertex of𝑈 falls along a line of 𝑉 . However, with large enough 𝛼 part of this

pyramid is clipped, taking a triangular tip off. There are then two regimes of behaviour, one for small 𝛼 and one for

large 𝛼 . The volume of the intersection can be computed as

1

12

sin(𝜋/6)
sin(𝜋/2 − 𝜋/6 − 𝛼/2) −


0 1/2 < cos(𝛼/2),
cos(𝛼/2)−1/2
3(cos(𝛼/2)−1)

(
1

2
− cos(𝛼/2)

)
2

tan(𝜋/6) 1/2 ≥ cos(𝛼/2) .

The regimes are then split by 𝛼 = 2 cos
−1 (1/2).

The left of Figure 11 shows the relative error of the computed intersection as a function of the angle 𝛼 . For the vast

majority of values of 𝛼 all algorithms tested with this example perform to machine precision. However, certain values of

𝛼 in the second regime produce large errors when using PANG. Algorithm 2 and Sutherland-Hodgman have essentially

identical relative error, up to minor fluctuations in machine precision.

Algorithm 2 is shown to take the least computation time, see right of Figure 11, especially in the second regime

where its combinatorial tests prevent unnecessary calculations. The computation time remains at the same order of

magnitude for all algorithms. Most notably, Sutherland-Hodgman has nearly identical computation time to Algorithm

2, except in the second regime where it must perform additional calculations.
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Fig. 10. Intersecting tetrahedra from Table 8 for 𝛼 = 𝜋/3 (left) and 3𝜋/4 (right).
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Fig. 11. Relative error (left) and computation time (right) for running the example from Table 8. Algorithm 2 is labelled as TetIA, for
tetrahedral intersection algorithm.

Algorithm 2 shows no loss of accuracy or efficiency compared to Sutherland-Hodgman, and provides significant

improvements in accuracy over PANG. This suggests Algorithm 2 is the strictly better algorithm, as it has proven

robustness. Note that Sutherland-Hodgman is almost certainly robust itself, given it is formed from a subset of the

calculations of Algorithm 2, but no proof is currently published.
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6 Conclusions

Algorithm 2 is proven to be robust to errors that affect the shape of the intersection between tetrahedra. Since the

algorithm is consistent, a significant intersection cannot vanish under small numerical error, such as those caused by

floating-point arithmetic. The algorithm can be complicated to implement, as discussed in Section 4.1, but it successfully

avoids errors that can seriously affect these alternatives, see Section 5.2, without loss of computation time, again see

Section 5.2.
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