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1 Introduction

The most common application for intersection algorithms is computer graphics [2]. In this setting, one is concerned

with the portion of a ’subject’ object that is hidden from the viewer by a second ’clipping’ object, or when the two

objects collide. In the former case the intersection is between 2D objects, as the viewing plane is a projection of the 3D

space. In the latter case collision detection involves intersecting 3D objects.

Other applications arise through the use of nonmatching grids, for example in multiphysics problems [9]. In highly

complex models with several different types of physical behaviours, such as a ferrofluid flowing through a magnetic

field, it can be useful to separate the behaviours by placing each on its own grid. In the ferrofluid example, the fluid

dynamics occupies one grid while the magnetic interaction lies on another. To pass information between the grids one

needs to project from one to the other, which requires calculating the intersection of the individual elements.

Intersections in 2D and 3D are also calculated for mortar methods [10], contact algorithms [6], and finite element

methods [8]. Higher dimensional intersections are calculated for estimation problems [1]. In these problems the space

of measurements is intersected with the space of parameters, both of which may have arbitrary dimension.

These various applications of intersection algorithms mean the problem they attempt to solve goes by many names,

some of which include: mesh intersection problem; grid transfer problem; intergrid communication problem, and;

polygon/polyhedron clipping problem.

The intersection of two simplices is a convex polytope. To distinguish between the vertices of the simplices and

those of the intersection let the latter be referred to as corners of the polytope. Any algorithm for the intersection of

two simplices must consider two types of corners: vertices of one simplex inside the other, and the points where the

simplices intersect. See Figure 1 for an example in 2D.

An intersection algorithm can either be symmetric and treat the two simplices equally, or it can be asymmetric and

give preferential treatment to one of them. For example, one can employ a change of coordinates that transforms one of
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2 Conor McCoid

Fig. 1. The corners of the intersection of two simplices are either vertices of one simplex inside the other (green squares) or points
where the two meet (blue diamonds).

the simplices into a reference simplex aligned with the coordinate axes; The two simplices are not treated equally. For

asymmetric algorithms the determination of whether a vertex of one lies within the other must likewise be asymmetric.

To continue with the example, a vertex in the reference simplex is found with fewer calculations than one found within

a general simplex.

For dimension 2 the points where the simplices intersect is simple: They are the points where the edges meet. In

dimension 𝑛 things become more complicated. The corners of the polytope are now the intersections between two high

dimensional faces, called 𝑘-faces, such that the sum of their dimensions is equal to 𝑛. In 3D, for example, the corners

are the intersections of the edges of one simplex with the faces of the other, giving two subtypes of such corners. As the

dimension increases so does the number of subtypes of corners. In symmetric algorithms these are treated in pairs,

while for asymmetric algorithms each subtype must be treated differently.

The algorithm presented in this paper is an asymmetric algorithm. The pseudocode found in Algorithm 1 gives an

overview of the necessary steps of the algorithm. Line 1 is dealt with in Section 2; line 2 in Section 3; lines 3 through 5

in Section 4; and line 6 in Section 5.

Algorithm 1 Asymmetric simplicial intersection algorithms

1: Transform simplices𝑈 and 𝑉 to general simplex 𝑋 and special simplex 𝑌

2: Determine which vertices of 𝑋 lie within 𝑌

3: for 𝑘 = 1 to 𝑛 − 1 do
4: Find intersections of 𝑘-faces of 𝑋 with (𝑛 − 𝑘)-faces of 𝑌
5: end for
6: Determine which vertices of 𝑌 lie within 𝑋

To ensure the algorithm is robust it has been written by adhering to the principle of parsimony, namely that a

minimum number of calculations is used to arrive at the conclusion. This means that if a given calculation can be used

to avoid additional calculations then the algorithm will do so, and if information pertinent to another calculation may

be inferred from this given calculation then the algorithm will do so. The algorithm will therefore be referred to as the

parsimonious simplicial intersection algorithm, or ParSIA.

Many other intersection algorithms have been developed over the past century, mainly for the intersection of

2D shapes [2, 5, 11–14]. Of particular note amongst these is the Sutherland-Hodgman algorithm [13], generalized to
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Fig. 2. Coordinate transformation of tetrahedron𝑉 into reference tetrahedron 𝑌 .

arbitrary dimension by Broman and Shensa in [1]. It is also an asymmetric algorithm, but for the intersection of one

convex polytope and one object of the same dimension. The convex polytope defines a set of hyperplanes which are

used to sequentially section the other object until only the intersection remains. This bears similarities to the approach

in Section 4.

The algorithm presented here is a generalization of PANG2 [7], itself the successor to PANG (Projection Algorithm

for Nonmatching Grids) [3, 4]. Failures of PANG related to inconsistent calculations led to the creation of PANG2,

which focused on the intersection of triangles. The principles applied there are expanded upon here to encompass

simplices in arbitrary dimensions.

2 Notation and coordinate system

Consider two arbitrary simplices 𝑉 and 𝑈 in R𝑛 . Each simplex has 𝑛 + 1 vertices. Denote the coordinates of one of
the vertices of 𝑉 as v0, the 0th vertex. The coordinates of the remaining vertices of 𝑉 are then defined as v0 + v𝑖 for
𝑖 = 1, . . . , 𝑛. The vector v𝑖 then runs along the edge of 𝑉 between its 0th and 𝑖-th vertex. The vectors u0 and u𝑗 for
𝑗 = 1, . . . , 𝑛 are equivalently defined for the simplex𝑈 .

To simplify calculations, transform the simplex𝑉 into a reference simplex𝑌 with the edges v𝑖 aligned to the coordinate
axes. That is, if 𝑉 is the matrix containing the coordinates of the vertices of 𝑉 then seek the affine transformation

𝐴x + b such that

𝐴𝑉 + b1⊤ =

[
0 𝐼

]
.

This maps v0 to the origin and v𝑖 to e𝑖 , a cardinal direction with unit length. It is trivial to show that b = −𝐴v0 and 𝐴 is

the inverse of

[
v1 . . . v𝑛

]
. This transformation makes the algorithm asymmetric.

The coordinates of𝑈 must be subjected to the same transformation, giving coordinates of the transformed simplex

𝑋 . The coordinates x𝑖 for 𝑖 = 0, . . . , 𝑛 are unknown and can be found by solving the system[
v1 . . . v𝑛

] [
x0 . . . x𝑛

]
=𝑈 − v01⊤, (2.1)

where𝑈 is the matrix containing the coordinates of the vertices of𝑈 .

In addition to the Euclidean coordinates of each point, x · e𝑖 , it is useful to add a 0th coordinate, x · e0 = 1−∑𝑛
𝑖=1 x · e𝑖 .

With this addition the coordinates x𝑗 are the barycentric coordinates of𝑈 relative to 𝑉 .
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4 Conor McCoid

To avoid unnecessary degenerate cases, use the binary-valued sign function,

sign(𝑥) =

1 𝑥 ≥ 0,

0 𝑥 < 0,

in place of its more standard trinary-valued counterpart. All instances of sign evaluations will use this definition. In

this way, a degenerate case finds the same number of vertices with the same relative positions as the non-degenerate

case where the vertices of𝑈 are shifted infinitesimally towards the centre of 𝑉 .

The intersection of two simplices is a polytope of the same dimension when avoiding degenerate cases. Denote the

intersection of𝑈 and𝑉 as𝑊 , keeping in mind that it may be empty. The transformation of𝑊 , which is the barycentric

representation of𝑊 with respect to 𝑉 , is denoted as 𝑍 .

3 Vertices of 𝑋 inside 𝑌

Before proceeding, note that there are two main ways in which to define a simplex. Firstly, one can use 𝑛+1 hyperplanes
to bound the simplex.

Definition 1 (Simplex 1). A simplex in R𝑛 is the intersection of 𝑛 + 1 half-spaces, each of which is bounded by a

hyperplane with codimension 1.

This definition will be used primarily when discussing the simplex 𝑌 . Define the 𝑛 + 1 hyperplanes as

𝑃𝑖 = {x ∈ R𝑛 | x · e𝑖 = 0} , 𝑖 = 0, . . . , 𝑛.

The corresponding half-space is {x ∈ R𝑛 | x · e𝑖 ≥ 0}. It is the set of points x ∈ R𝑛 such that sign(x · e𝑖 ) = 1. The simplex

𝑌 corresponds then exactly to the intersection of these 𝑛 + 1 half-spaces. That is, the characteristic function of 𝑌 may

be expressed as

𝜒𝑌 (x) =
𝑛∏
𝑖=0

sign(x · e𝑖 ) . (3.1)

Given that the intersection 𝑍 lies in both 𝑋 and 𝑌 , it is naturally true that 𝜒𝑍 (x) = 𝜒𝑌 (x)𝜒𝑋 (x). Since 𝜒𝑋 (x𝑗 ) = 1

(the vertices of 𝑋 lie within 𝑋 ), 𝜒𝑍 (x𝑗 ) = 1 if and only if 𝜒𝑌 (x𝑗 ) = 1, which is true if and only if sign(x𝑗 · e𝑖 ) = 1 for all 𝑖 .

Thus, the 𝑗-th vertex of 𝑋 is a corner of the polytope 𝑍 if and only if all of its barycentric coordinates are non-negative.

Briefly, consider the degenerate case where x · e𝑖 = 0. Such a point lies on the hyperplane that bounds 𝑌 . Define

the corresponding half-space to contain this bounding hyperplane, and so x lies within this half-space. Ultimately this

means the boundary of 𝑌 is treated no differently than its interior. A point x on the boundary of 𝑌 is then equivalent to

one shifted an infinitesimal distance towards the interior for the purposes of this algorithm.

4 Intersections between 𝑘-faces of 𝑋 and hyperplanes of 𝑌

The second definition of a simplex is more useful for discussing the simplex 𝑋 .

Definition 2 (Simplex 2). A simplex in R𝑛 is the convex hull of 𝑛 + 1 vertices.

However, of greater interest is the convex hull of a subset of these vertices, called a 𝑘-face. It is defined here and

used in Section 4.2.

Definition 3 (𝑘-face). A 𝑘-face of a simplex is the convex hull of 𝑘 + 1 of its 𝑛 + 1 vertices. Let 𝑋 𝐽 denote the 𝑘-face
formed by the 𝑘 + 1 vertices of 𝑋 indexed by the set 𝐽 .
Manuscript submitted to ACM



Parsimonious simplicial intersection algorithm 5

Fig. 3. A 3D example showing the five ways to partition the vertices of 𝑋 between the two half-spaces created by the sectioning
hyperplane 𝑃 . The intersection between the two is either empty, a triangle or a quadrilateral.

4.1 Sectioning by hyperplanes

In the trivial case where all x𝑗 lie within 𝑌 , 𝑍 = 𝑋 . Otherwise, the vertices of 𝑍 (if they exist) include intersections

between 𝑋 and the hyperplanes 𝑃𝑖 . Since both 𝑋 and 𝑃𝑖 bound 𝑍 , their intersection bounds 𝑍 .

Take two vertices of 𝑋 , x𝑗1 and x𝑗2 , and one hyperplane 𝑃𝑖 that bounds 𝑌 . The edge between the two vertices

intersects 𝑃𝑖 if and only if sign(x𝑗1 · e𝑖 ) ≠ sign(x𝑗2 · e𝑖 ). This condition is used by ParSIA to determine if an intersection

exists. Since sign(x) is binary-valued the number of intersections that can be calculated by ParSIA is limited. The

following proposition ensures that a consistent number of intersections is found by ParSIA. Most importantly, it ensures

the resulting intersection is an object with sufficient vertices to have non-zero volume in the hyperplane.

Proposition 4. Let 𝑋 be a simplex in R𝑛 , defined as the convex hull of 𝑛 + 1 vertices, intersecting a hyperplane 𝑃 with

codimension 1. The intersection either does not exist or is a polytope in R𝑛−1 with at least 𝑛 vertices.

Proof. Let the hyperplane 𝑃 have normal vector n. The simplex has 𝑛 + 1 vertices x𝑗 . Each vertex has a value of

sign(x𝑗 · n) which is either 0 or 1.

There are 𝑛 + 2 ways to partition 𝑛 + 1 objects into two groups 𝑆0 and 𝑆1. If one does not care about the difference

between 𝑆0 and 𝑆1, as in this case, then there are ⌈(𝑛 + 1)/2⌉ ways to partition the objects. The first of these is to put all

objects into 𝑆0. The second is to put all but one into 𝑆0.

Every pair composed of an object from 𝑆0 and another from 𝑆1 represents a vertex of the intersection between 𝑋 and

𝑃 . The first partitioning has 𝑆1 = ∅, meaning no such pairs exist and there is no intersection. The second partitioning

has exactly one object in 𝑆1, meaning each pair is composed of this one object and one of the 𝑛 objects in 𝑆0. This gives

𝑛 pairs and therefore 𝑛 vertices, which is a simplex in dimension 𝑛 − 1. Any other partitioning has more objects in 𝑆1

and a non-empty 𝑆0, thus giving more pairs than this second partitioning. The intersection then has at least 𝑛 vertices

in dimension 𝑛 − 1 and is thus a polytope in that dimension. □

This proposition can be reapplied to subsequent intersections. By this proposition any intersection between a simplex

and a hyperplane is at least a simplex in the hyperplane. Intersecting this intersection with another hyperplane will

then result again in at least a simplex. Outside of degenerate cases where the vertices of the resulting polytope are

coplanar, the polytope has non-zero hypervolume.

4.2 Intersection calculation

The intersection 𝑋 ∩ 𝑃𝑖 is the convex hull of the set of intersections between the edges of 𝑋 and 𝑃𝑖 :

𝑋 ∩ 𝑃𝑖 = Conv

({
𝑋 𝐽 ∩ 𝑃𝑖

�� |𝐽 | = 2

})
,
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6 Conor McCoid

where 𝑋 𝐽 denotes a 𝑘-face of 𝑋 , see Definition 3. Denote a particular intersection as q𝐽{𝑖 } = 𝑋 𝐽 ∩ 𝑃𝑖 . Those points q
𝐽

{𝑖 }
for which 𝜒𝑌 (q) = 1 are vertices of 𝑍 , as they lie on the boundary of both 𝑋 and 𝑌 . If 𝜒𝑌 (q) = 0 for some of these

points, then 𝑋 ∩ 𝑃𝑖 must be intersected with additional hyperplanes to find that portion of 𝑋 ∩ 𝑃𝑖 that lies within 𝑌 .
Take the intersection of 𝑋 ∩ 𝑃𝑖1 with 𝑃𝑖2 , which is equivalent to taking the intersection of 𝑋 with 𝑃𝑖1 ∩ 𝑃𝑖2 . The

intersection of the two hyperplanes is itself a hyperplane with codimension 2. Consider two vertices of 𝑋 ∩ 𝑃𝑖1 , q
𝐽

{𝑖1 }
and q𝐾{𝑖1 } such that 𝐽 and 𝐾 have an index in common, which lie on opposite sides of the hyperplane 𝑃𝑖2 . Both lie on the

2-face of 𝑋 indexed by 𝐽 ∪ 𝐾 . The intersection between the edge connecting these two vertices and 𝑃𝑖2 then also lies

on 𝑋 𝐽∪𝐾 ∩ 𝑃𝑖1 ∩ 𝑃𝑖2 , which is a single point. Keeping the same notation, this point is written as q𝐽∪𝐾{𝑖1,𝑖2 } . As before, if
𝜒𝑌 (q) = 1 then this point is a vertex of 𝑍 .

Repeat this for 𝑘 < 𝑛 hyperplanes, arriving at

𝑋

𝑘⋂
𝑚=1

𝑃𝑖𝑚 =

(
𝑋

𝑘−1⋂
𝑚=1

𝑃𝑖𝑚

)
∩ 𝑃𝑖𝑘 .

As before, consider two vertices from the previous step that lie on opposite sides of 𝑃𝑖𝑘 , q
𝐽

Γ and q𝐾Γ , where |𝐽 | = |𝐾 | = 𝑘 ,
𝐽 and 𝐾 share all but one index, and Γ = {𝑖𝑚}𝑘−1𝑚=1. Then both lie on the 𝑘-face of 𝑋 indexed by 𝐽 ∪ 𝐾 . The intersection
between the edge connecting them and 𝑃𝑖𝑘 is the point

q𝐽∪𝐾
Γ∪{𝑖𝑘 }

= 𝑋 𝐽∪𝐾
⋂

𝑖∈Γ∪{𝑖𝑘 }
𝑃𝑖 ,

which is a vertex of 𝑍 if 𝜒𝑌 (q) = 1.

The sets 𝐽 and 𝐾 are assumed to share all but one index, a property here referred to as adjacency. This ensures the

vertices they index lie on the same 𝑘-face, where 𝐽 and 𝐾 both have cardinality 𝑘 , |𝐽 | = |𝐾 | = 𝑘 . Only these intersections
appear on the exterior of 𝑋 and thus 𝑍 . If 𝐽 and 𝐾 differ by more than one index then their vertices do not share a

𝑘-face and any intersection calculated will be interior to both 𝑋 and 𝑍 and thus not useful to the calculation of the

intersection.

Lemma 5. Suppose the 𝑘-face of 𝑋 indexed by 𝐽 intersects the 𝑘 hyperplanes 𝑃𝑖 indexed by Γ. Then

q𝐽Γ · e𝜂 =

��������
x𝑗0 · e𝜂 x𝑗0 · e𝑖1 . . . x𝑗0 · e𝑖𝑘

.

.

.
.
.
.

.

.

.

x𝑗𝑘 · e𝜂 x𝑗𝑘 · e𝑖1 x𝑗𝑘 · e𝑖𝑘

����������������
1 x𝑗0 · e𝑖1 . . . x𝑗0 · e𝑖𝑘
.
.
.

.

.

.
.
.
.

1 x𝑗𝑘 · e𝑖1 x𝑗𝑘 · e𝑖𝑘

��������
=

���𝑋⊤
𝐽
e𝜂 𝑋⊤

𝐽
𝐼Γ

������1 𝑋⊤
𝐽
𝐼Γ

��� , (4.1)

where 𝑋 𝐽 are the coordinates of the vertices of 𝑋 𝐽 and 𝐼Γ the columns of the identity matrix indexed by Γ.

Proof. See Appendix A. □

Note that this is neither the most efficient nor accurate method for calculating these intersections. It is used here

only for its theoretical value.
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Parsimonious simplicial intersection algorithm 7

Fig. 4. Entire 𝑘-faces of tetrahedra shifting sides relative to intersections of hyperplanes. (Above) A 1-face (edge) moves from the left
of the intersection of two hyperplanes (an edge) to the right of it. (Below) A portion of a 2-face (face) moves from one side of the
intersection of three hyperplanes (a vertex) to the opposite side.

4.3 Relative position of the intersections

The shape of the polytope 𝑍 is determined by the position of its corners relative to the hyperplanes of 𝑌 . For example,

in [7] the authors identified 10 unique shapes of 𝑍 for triangular intersections. The relative position of these corners is

due to the signs of their coordinates. A change in sign will then change the shape of 𝑍 .

Corollary 6. The numerator of q𝐽Γ · e𝜂 is shared with the numerators of q𝐽Γ𝑖 · e𝑖 for 𝑘 values of 𝑖 , up to a change in sign,

where Γ and Γ𝑖 := {𝜂} ∪ Γ \ {𝑖} have cardinality 𝑘 . If e𝑖 is the 𝑠𝑖 -th column of Γ and e𝜂 the 𝑠𝜂 -th column of Γ𝑖 , then the sign

change occurs if 𝑠𝑖 + 𝑠𝜂 is even.

Proof. For each 𝑖 ∈ Γ, Γ𝑖 is defined by replacing the index 𝑖 with the index 𝜂. Since Γ has 𝑘 indices there are 𝑘 such

Γ𝑖 . For each of these the numerator of q𝐽Γ𝑖 · e𝑖 is the same up to an exchange of columns in the determinant. It takes 𝑠𝑖

column exchanges to move e𝑖 to the front of the determinant while preserving the order of the other columns. It then

takes another 𝑠𝜂 − 1 column exchanges to move e𝜂 to its position. Thus, there’s a change in sign if 𝑠𝑖 + 𝑠𝜂 − 1 is odd. □

By this corollary, if there is a change in sign of q𝐽Γ ·e𝜂 , then the entire 𝑘-face𝑋 𝐽 ends up on the other side of 𝑃𝜂
⋂
𝑖∈Γ 𝑃𝑖 ,

see Figure 4. All intersections of a given 𝑘-face are then consistent with one another, keeping it whole and intact. If the

signs were not connected across a 𝑘-face then an error in one sign could cause it to distort and break apart.
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8 Conor McCoid

If 𝑋 𝐽 does not have 𝑘 + 1 intersections with a given collection of hyperplanes, then this no longer holds true. While

the intersections that do exist would be consistent amongst themselves for the collection

⋂
𝑖∈Γ 𝑃𝑖 , they may not be for

other collections 𝑃𝜂
⋂
𝑖∈Γ\{𝛾 } 𝑃𝑖 . However, in this case there exist subsets of 𝐽 and Γ such that

sign(q𝐽 \{ 𝑗1 }
Γ\{𝛾 } · e𝜂) = sign(q𝐽 \{ 𝑗2 }

Γ\{𝛾 } · e𝜂),

sign(q𝐽 \{ 𝑗1 }
Γ\{𝛾 } · e𝛾 ) ≠ sign(q𝐽 \{ 𝑗2 }

Γ\{𝛾 } · e𝛾 ) .

That is, the 𝑘-face 𝑋 𝐽 has two intersections with the collection of hyperplanes indexed by Γ \ {𝛾} such that they lie

on the same side of 𝑃𝜂 and different sides of 𝑃𝛾 . Any point on the edge between these two intersections lies on the

same side of 𝑃𝜂 as these intersections, including the intersection of this edge with 𝑃𝛾 . Then the sign of q𝐽Γ · e𝜂 may be

determined without further calculations, and is

sign(q𝐽Γ · e𝜂) = sign(q𝐽 \{ 𝑗1 }
Γ\{𝛾 } · e𝜂) . (4.2)

Thus, the position of the 𝑘-face relative to the collection of hyperplanes is determined either by the calculation of a

single numerator or is predetermined by the coordinates of the (𝑘 − 1)-faces that compose the 𝑘-face.

It is now known that the numerators are strongly linked over a 𝑘-face, but what of the denominators? These are

unique for each q𝐽Γ and so at first glance it appears they cannot be of much use. However, the ratio between denominators

of a given 𝑘-face for adjacent collections of hyperplanes provides a fundamental relation between the signs of the

intersections of that 𝑘-face and those of its parent intersections.

Before giving this relation as Lemma 8, define the logical biconditional operator to compensate for the use of the

binary-valued sign function.

Definition 7 (Logical biconditional operator). The operator ⊗ that acts as 0 ⊗ 0 = 1, 1 ⊗ 1 = 1 and 0 ⊗ 1 = 0 is

called the logical biconditional operator.

Lemma 8. Suppose sign(q𝐽1Γ · e𝑖 ) ≠ sign(q𝐽2Γ · e𝑖 ) and sign(q
𝐽1
Γ · e𝑗 ) ≠ sign(q𝐽2Γ · e𝑗 ) for two adjacent sets 𝐽1 and 𝐽2, then

sign(q𝐽1∪𝐽2
Γ∪{𝑖 } · e𝑗 ) ⊗ sign(q𝐽1∪𝐽2

Γ∪{ 𝑗 } · e𝑖 ) = sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) .

Proof. See Appendix B. □

Thus, for every intersection q𝐽1∪𝐽2
Γ∪{𝑖 } either there is another intersection q𝐽1∪𝐽2

Γ∪{ 𝑗 } and the two have related signs in

relevant directions, or its sign in the relevant direction is inherited from the previous generation.

Once the signs of the intersections q𝐽Γ have been found they can be used to identify which intersections need to be

calculated for the subsequent generation and which intersections lie within 𝑌 . If 𝜒𝑌 (q) = 1 using these sign values

then q𝐽Γ is a corner of the polytope 𝑍 . Its equivalent position w𝐽

Γ on𝑊 in the original coordinates is found through a

reverse change of coordinates, namely

w𝐽

Γ = v0 +
∑︁

𝑖∉Γ∪{0}

(
q𝐽Γ · e𝑖

)
v𝑖 . (4.3)

Note that the 0th coordinate of q𝐽Γ is not required, nor are the 𝑖-th coordinates where 𝑖 ∈ Γ as these are known to be

zero. Note also that the magnitude of q𝐽Γ is only required if it is found to lie within 𝑌 , as otherwise only the signs of its

coordinates are of use.
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𝐽1 Γ1 Γ𝐽2

x · e𝑖2 = 0

Fig. 5. The hyperplane indexed by 𝑖2 (in blue) intersects the line which is the intersection of all hyperplanes indexed by Γ (in red). The
point of their intersection is the vertex e𝑖

1
(in black) which is the intersection of all hyperplanes indexed by Γ1. Since it lies along the

line Γ between the intersections indexed by 𝐽1 and 𝐽2 (in blue) it also lies within the simplex 𝑋 .

5 Vertices of 𝑌 inside 𝑋

Once all intersections between 𝑋 and 𝑌 have been found, the only remaining corners of the polytope 𝑍 are those

vertices of 𝑌 which lie entirely within 𝑋 . To understand how to determine which vertices of 𝑌 lie within 𝑋 , it is easiest

to consider a single edge of 𝑌 that connects two vertices. Since 𝑌 has been defined as the intersection of 𝑛+1 half-spaces
each bounded by a hyperplane 𝑃𝑖 , these two vertices are defined as the intersection of 𝑛 of these hyperplanes. Let the

index sets of these hyperplanes be Γ1 and Γ2. These sets contain all but one element in {0, . . . , 𝑛}, denoted 𝑖1 and 𝑖2
respectively, which index the hyperplanes opposite the corresponding vertices. Therefore, the two sets have an index

set of cardinality 𝑛 − 1 in common, denoted Γ. Incidentally, Γ1 = Γ ∪ {𝑖2} and Γ2 = Γ ∪ {𝑖1}. The intersection
⋂
𝑖∈Γ 𝑃𝑖

defines the line on which the edge sits.

Since 𝑋 is convex, there are two possibilities: this infinite line passes through 𝑋 and there exist two intersections

q𝐽1Γ and q𝐽2Γ , or; the line does not pass through 𝑋 and there are no intersections between the two. In the latter case,

any vertices of 𝑌 attached to this line cannot reside within 𝑋 . Suppose then that the former is true, and two facets

((𝑛 − 1)-faces) of 𝑋 intersect the line indexed by Γ.

The line is a 1-dimensional object and, due to the redundant e0 coordinate, there are only two coordinates of q𝐽1Γ
and q𝐽2Γ that are non-zero, namely q𝐽𝑗Γ · e𝑖1 and q𝐽𝑗Γ · e𝑖2 . A vertex along the line lies within 𝑋 if and only if these two

intersections lie on opposite sides of it. Consider the vertex indexed by Γ1, which includes 𝑖2 but not 𝑖1. It sits on the

line where x · e𝑖2 = 0. Therefore, this vertex lies within 𝑋 if and only if sign(q𝐽1Γ · e𝑖2 ) ≠ sign(q𝐽2Γ · e𝑖2 ), see Figure 5.
Likewise, the vertex indexed by Γ2 lies within 𝑋 if and only if sign(q𝐽1Γ · e𝑖1 ) ≠ sign(q𝐽2Γ · e𝑖1 ).

The test of a vertex of 𝑌 is essentially a final intersection calculation, adding one last hyperplane to the collection.

Since the collection up to this point has formed a line, the resulting intersection is necessarily the 0-dimensional vertex

of 𝑌 .

Every vertex has 𝑛 edges extending from it, meaning this test can be performed 𝑛 times. However, as long as previous

steps have been parsimonious and produced consistent results, all tests will agree. Therefore, the test only needs to be

performed once.
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6 Parsimonious simplicial intersection algorithm

ParSIA is presented as Algorithm 2. It takes arbitrary simplices 𝑈 and 𝑉 in R𝑛 . The simplex 𝑉 is given preferential

treatment and ideally has an aspect ratio near 1. Line 1 is discussed in Section 2, lines 2 to 6 in Section 3, lines 9 to 13 in

Section 4.1, line 21 in Section 4.2, lines 14 to 28 in Section 4.3, and lines 30 to 35 in Section 5.

Algorithm 2𝑊 =ParSIA(𝑈 ,𝑉 )

1: Find coordinates of vertices of 𝑋 ⊲ see equation (2.1)

2: for 𝑗 = 0 to 𝑛 do
3: if 𝜒𝑌 (x𝑗 ) = 1 then ⊲ see equation (3.1)

4: u0 + u𝑗 ∈𝑊
5: end if
6: end for
7: Initialize all vertices of 𝑋 as intersections of the 0-th generation

8: while there are intersections from the previous generation do
9: for each collection Γ with intersections, each adjacent pair (𝐽 , 𝐾), and each coordinate 𝑖 ∉ Γ do
10: if sign(q𝐽Γ · e𝑖 ) ≠ sign(q𝐾Γ · e𝑖 ) then
11: there exists an intersection q𝐽∪𝐾

Γ∪{𝑖 }
12: end if
13: end for
14: for each intersection q𝐽Γ found above do
15: for each coordinate 𝑗 ∉ Γ do
16: if there is no q𝐽Λ for any Λ such that Λ ∪ {𝑖} = Γ ∪ { 𝑗} then
17: inherit sign(q𝐽Γ · e𝑗 ) from the previous generation ⊲ see equation (4.2)

18: else if sign(q𝐽Λ · e𝑖 ) is known for some Λ such that Λ ∪ {𝑖} = Γ ∪ { 𝑗} then
19: use Lemma 8 to find sign(q𝐽Γ · e𝑗 )
20: else
21: calculate q𝐽Γ · e𝑗 , such as by Lemma 5

22: end if
23: end for
24: if 𝜒𝑌 (q𝐽Γ) = 1 then
25: calculate q𝐽Γ , if necessary
26: calculate w𝐽

Γ ∈𝑊 ⊲ see equation (4.3)

27: end if
28: end for
29: end while
30: for 𝑖 = 0 to 𝑛 do
31: choose Γ such that 𝑖 ∉ Γ and |Γ | = 𝑛 − 1
32: if sign(q𝐽1Γ · e𝑖 ) ≠ sign(q𝐽2Γ · e𝑖 ) then
33: v0 + v𝑖 ∈𝑊
34: end if
35: end for

The flowchart of this algorithm is presented in Figure 6. Red parallelograms represent inputs and outputs, green

rectangles represent actions and calculations, yellow rounded boxes represent for and while loops, and blue diamonds

represent tests and if statements.

All signs of intersection pairs for the previous generation must be tested before signs of the next generation can

be determined. This is because inheritance can come from any parent pair of the previous generation. This prevents
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𝑈 , 𝑉

𝑈 → 𝑋 , 𝑉 → 𝑌

for all vertices x𝑗 of 𝑋 𝜒𝑌 (x𝑗 ) = 1?

u0 + u𝑗 ∈𝑊

for all dimensions 𝑘

determine which

𝑘-faces have

intersections

determine

signs of

intersections

𝜒𝑌 (q𝐽Γ) = 1?

w𝐽

Γ ∈𝑊

for all hyperplanes 𝑃𝑖 of 𝑌

choose Γ such

that 𝑖 ∉ Γ
and |Γ | = 𝑛 − 1

sign(q𝐽1Γ · e𝑖 ) ≠
sign(q𝐽2Γ · e𝑖 )?

v0 + v𝑖 ∈𝑊

𝑊

Yes

Yes

Yes

Fig. 6. Flowchart of the algorithm. Red parallelograms represent inputs and outputs, green rectangles represent actions and calcula-
tions, yellow rounded boxes represent for and while loops, and blue diamonds represent tests and if statements.

proceeding through the algorithm one hyperplane at a time, adding only one at each iteration, as is done in the

Sutherland-Hodgman algorithm [1, 13].

If a given collection of hyperplanes is found to have no intersections with 𝑋 , then no collection that contains

this collection as a subset will have intersections. This can be used to limit the combinations of collections checked,

improving the efficiency of the algorithm.

If no intersections are found for a given generation, then the algorithm may end immediately without testing for

vertices of 𝑌 inside 𝑋 , as there are no intersections to bound the vertices of 𝑌 .

Additional modifications can be made to Algorithm 2 to strengthen its robustness. They are not required for Theorem

12, which gives consistency of the algorithm. However, this theorem only holds true if convexity is maintained to a

certain degree, with which these modifications may assist. They may also be useful for accuracy, which is not covered by

the theorem. No tests run for this article required these modifications, suggesting they are needed only for pathological

examples.
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𝑥 𝑦 𝑧

x0 + + +

∩𝑃𝑥 + +

∩𝑃𝑦 - +

∩𝑃𝑧 - -

x1 - - -

𝑥 𝑦 𝑧

x0 + + +

∩𝑃𝑥 + -

∩𝑃𝑦 - +

∩𝑃𝑧 + -

x1 - - -

Table 1. Ordering of intersections in a 3D example that maintain the straight line principle. The coordinates of x0 are all positive,
while the coordinates of x1 are all negative. (Left) The straight line travelling from x0 to x1 passes first through 𝑃𝑥 , then 𝑃𝑦 , and
finally 𝑃𝑧 . (Right) Error in the sign of one intersection destroys this ordering and with it convexity of the intersection.

6.1 Straight line principle

Lemma 8 ensures the consistency of intersections between a given 𝑘-face and adjacent collections of hyperplanes in any

of these hyperplanes. It does not maintain this consistency in the higher dimensional space. That is to say, if a 𝑘-face has

intersections with at least three adjacent collections of hyperplanes, then it is possible for Algorithm 2 to lose convexity

of the 𝑘-face through round-off error. To avoid this, one can include additional constraints when determining signs.

Suppose a 𝑘-face has intersections with𝑚 ≥ 3 collections of hyperplanes. A straight line of intersections lies between

two intersections of the previous generation. This line passes through each hyperplane one at a time. As such, the signs

of its coordinates change one at a time. This means there exists an ordering of the intersections based on how similar

their signs are with one of the two parent intersections.

To better explain this error, consider an example in 3D where an edge of one tetrahedron 𝑋 passes near a vertex of

the reference tetrahedron 𝑌 , passing through all three planes that intersect at this point. Table 1 gives such an example.

On the left, the edge between the two vertices passes through 𝑃𝑥 , then 𝑃𝑦 , then 𝑃𝑧 . Any two of these intersections are

inextricably linked through Lemma 8, such that the 𝑖-th row and 𝑖-th column of this table correspond with one another.

However, if round-off error causes a flip in sign in one coordinate, as seen on the right of the table, then the ordering of

the intersections is destroyed and they are no longer consistent with a straight line passing through three planes. As a

result, convexity is lost.

This ordering of the intersections, which shall be referred to as the straight line principle, reduces the degrees of

freedom of the signs of the intersections. After finding a given intersection along this line, one can determine its position

in the ordering by comparing its coordinates against those of its parents. The position of all other intersections in this

ordering relative to this first intersection can then be determined using Lemma 8.

Remark 9 (Straight line principle). Let q𝐽Γ and q
𝐾
Γ be two intersections such that 𝐽 is adjacent to 𝐾 . Suppose the line

between them intersects𝑚 ≥ 3 hyperplanes, i.e. sign(q𝐽Γ · e𝑖 ) ≠ sign(q𝐾Γ · e𝑖 ) for𝑚 choices of 𝑖 . If

sign(q𝐽∪𝐾
Γ∪{𝛾 } · e𝑖 ) = sign(q𝐽Γ · e𝑖 ), sign(q𝐽∪𝐾

Γ∪{𝛾 } · e𝑗 ) ≠ sign(q𝐽Γ · e𝑗 ),

then

sign(q𝐽∪𝐾
Γ∪{ 𝑗 } · e𝑖 ) = sign(q𝐽Γ · e𝑖 ), sign(q𝐽∪𝐾

Γ∪{𝑖 } · e𝑗 ) = sign(q𝐾Γ · e𝑗 ) ≠ sign(q𝐽Γ · e𝑗 ) .

Take, as a higher dimensional example, intersections q𝐽Γ and q𝐾Γ and seven intersections that lie between them, with

planes 𝑃𝑖 𝑗 for 𝑗 = 1, . . . , 7. Suppose one starts by finding q𝐽∪𝐾
Γ∪{𝑖3 } , which shares two signs with q𝐾Γ . Then it is the third

intersection in the straight line starting from q𝐽Γ going towards q𝐾Γ . The two signs that have changed from q𝐽Γ indicate
the two intersections that appear earlier in the ordering, those with 𝑃𝑖1 and 𝑃𝑖2 . It must be these hyperplanes because
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e𝑖1 e𝑖2 e𝑖3 e𝑖4 e𝑖5 e𝑖6 e𝑖7
q𝐽Γ + + + + + + +

∩𝑃𝑖1 , 𝑃𝑖2
+ + + + +

+

.

.

.
.
.
.

.

.

.
.
.
.

∩𝑃𝑖3 - - + + + +

∩𝑃𝑖4 , 𝑃𝑖5 , 𝑃𝑖6 , 𝑃𝑖7

.

.

.
.
.
. -

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

- - -

q𝐾Γ - - - - - - -

Table 2. Application of the straight line principle. The intersection q𝐽 ∪𝐾
Γ∪{𝑖

3
} is found to be the third intersection when starting from q𝐽Γ ,

dividing the remaining intersections into prior and subsequent sets.

𝑖

𝑗

q𝐽Γ

q𝐾Γ

q𝐽∪𝐾
Γ∪{ 𝑗 }

q𝐽∪𝐾
Γ∪{𝑖 }

q𝐽∪𝐾
Γ∪{𝛾 }

Fig. 7. Graphic representation of the straight line principle. The two intersections q𝐽Γ and q𝐾Γ are adjacent and have at least three

hyperplanes between them: 𝑃𝑖 , 𝑃 𝑗 and 𝑃𝛾 . The intersection q𝐽 ∪𝐾
Γ∪{𝛾 } has 𝑃 𝑗 between it and q𝐽Γ and 𝑃𝑖 between it and q𝐾Γ .

Lemma 8 dictates the sign in the 𝑖3-th coordinate. For these two intersections the signs of the other coordinates are the

same as q𝐽Γ . Likewise, those intersections with 𝑃𝑖 𝑗 for 𝑗 = 4, . . . , 7 have the same signs for the coordinates e𝑖1 and e𝑖2 as
q𝐾Γ . This is summarized in Table 2.

The straight line principle may be applied after all coordinates of a given intersection have been found, such as

immediately after line 35 of Algorithm 2. An additional check is required before calculating the sign of a coordinate

directly to make sure it has not been found via this means. The principle is unnecessary when the line intersects fewer

than three hyperplanes, as Lemma 8 completely determines consistency.

In many ways, the straight line principle supersedes Lemma 8. The lemma connects only a single row and column of

these tables of intersections, while the straight line principle connects the entire off-diagonal blocks. This suggests

a similar algebraic lemma and proof exists for the straight line principle that includes Lemma 8 as a special case. A

geometric proof is presented in Figure 7.

Manuscript submitted to ACM



14 Conor McCoid

6.2 Guardrails

ParSIA permits paradoxical results, due in part to the use of e0 as a coordinate for the purposes of determining relative

positions. The absolute position of intersections along this direction can be found using the other coordinates. However,

doing so decouples the signs of the intersections, removing the self-consistency of the algorithm’s steps. Using e0 allows
the paradox where an intersection has an absolute position on the negative side of 𝑃0 but has a relative position on the

positive side, or vice versa. This paradox can also arise due to sign inheritance, at least theoretically.

In most cases, these paradoxes do not present cause for concern. However, when 𝑘-faces of the tetrahedra are nearly

coincident, intersection calculations become unstable and these paradoxes can induce large additions to the calculated

hypervolume.

Luckily, the intersection 𝑍 must lie within the tetrahedron 𝑌 . This puts absolute limits on the positions of the corners

of 𝑍 , allowing the addition of guardrails to ParSIA: If a point is determined to be a corner of 𝑍 but numerically found to

lie outside of 𝑌 , then it will be mapped to a nearby point on 𝑌 .

In cases where these instabilities arise from coincident 𝑘-faces of 𝑋 and 𝑌 , any point on the 𝑘-face of 𝑌 is consistent,

and so it is not necessary to find the exact nearest point. This allows one to eschew a projection for a cheaper heuristic

selection. Keep in mind that the coordinates are barycentric, and must be kept so for the reverse transformation,

equation (4.3).

Remark 10 (Guardrails). Suppose Algorithm 2 determines 𝜒𝑌 (q𝐽Γ) = 1 but calculates sign(q𝐽Γ · e𝑖 ) = 0 for some set Λ

of 𝑖 , i.e. q𝐽Γ · e𝑖 < 0 for all 𝑖 ∈ Λ. Denote
𝑒𝑑 =

∑︁
𝑗∉Γ∪Λ

q𝐽Γ · e𝑗 ,

so that 1 − 𝑒𝑑 represents the amount of error that must be spread out over the coordinates so as to place q𝐽Γ ∈ 𝑌 and keep the

coordinates barycentric. If q𝐽Γ · e𝑗 ∈ [0, 1] for all 𝑗 ∉ Γ ∪ Λ, then set

q𝐽Γ · e𝑖 ←

0 𝑖 ∈ Λ,
1

𝑒𝑑
q𝐽Γ · e𝑖 𝑖 ∉ Γ ∪ Λ.

Otherwise, if q𝐽Γ · e𝑗 > 1 for 𝑘 values of 𝑗 , then set q𝐽Γ · e𝑗 ← 1/𝑘 and 0 for all other coordinates, thus mapping the point to

a 𝑘-face of 𝑌 .

The effects of guardrails are exemplified in Figure 8, which examines the case when Γ contains all but three of the

hyperplanes of 𝑌 , leaving a single triangular face. Effects are divided by lines where one of the coordinates is equal to

one. When all coordinates are less than one, paradoxical points are mapped to 𝑘-faces of 𝑌 , with positive coordinates

modulated so that the coordinates are barycentric.

If the paradoxical point has both negative coordinates and a coordinate greater than one, then the point is mapped to

the nearest vertex of 𝑌 , identified by the coordinate that is greater than one. If the point has negative coordinates and

𝑘 coordinates greater than one, then it is mapped to the barycentric centre of the nearest 𝑘-face. Other choices are

possible, especially projections, but care must be taken to ensure the coordinates sum to one.
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𝑌

Fig. 8. Effect of guardrails. The shaded triangle represents a 2-face of 𝑌 . Dashed lines represent where one of the three non-zero
coordinates is equal to one. Guardrails map paradoxical corners of 𝑍 to either vertices of this face or the midpoint of one of its edges.

7 Robustness of ParSIA

7.1 Convexity

While geometrically simplices and their intersections are convex, this property is not necessarily maintained numerically

by the algorithm. However, as part of the proof in Section 7.2, the calculations must maintain the convexity of the

simplices near the hyperplanes. That is, suppose the sections have the following property.

Definition 11 (Cut-convex). A polytope is cut-convex with respect to a hyperplane 𝑃 if, for each face of the polytope

that intersects 𝑃 , exactly two edges of the face intersect 𝑃 .

Naturally, if a polytope is convex, then it is cut-convex with respect to any hyperplane. This property will ensure the

necessary consequences of convexity are preserved for the sections calculated by the algorithm.

It does not appear that enforcing cut-convexity can be done within the algorithm without the addition of many

redundant calculations. The property is closely related to the accuracy of the intersection calculations. One can show

heuristically that failure of cut-convexity should only occur in pathological examples.

Figure 9 shows the possible configurations of a cell of a simplex with two hyperplanes 𝑃𝑖 and 𝑃 𝑗 . Unless the

intersections find themselves on the opposite sides of both hyperplanes then the algorithm fixes the signs of some of

the intersections in one of the directions, stabilizing the intersection and ensuring cut-convexity.

In the remaining case, four intersections with 𝑃𝑖 ∩ 𝑃 𝑗 can only occur if error causes a complete reordering of the

points in the 𝑗-direction, which is orthogonal to 𝑃 𝑗 . In the example in the right of Figure 9, the intersection with the

smallest 𝑗-coordinate now finds itself with the first or second largest 𝑗-coordinate. While the probability of such an

error is dependant on the specific calculations used, in general these should occur only when the intersections are

nearly coincident in the 𝑗-direction, implying the aspect ratio of 𝑋 is significantly smaller than that of 𝑌 .

Figure 10 shows an extreme pathological example, where one tetrahedron with an aspect ratio on the order of 1𝑒 − 14
intersects a tetrahedron with an aspect ratio on the order of one. Four intersections between the former and one of

the edges of the latter indicate a failure of cut-convexity. However, when the intersection between the tetrahedra is

transformed under the affine transformation that maps the flat tetrahedron to the reference tetrahedron, the shape

of the polytope does not appear to be unduly affected by this failure. Some erroneous and inaccurate corners can be

spotted, but these cause neither significant additions nor subtractions from the volume.
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𝑃 𝑗

𝑃𝑖

𝑃 𝑗

𝑃𝑖

𝑃 𝑗

𝑃𝑖

𝑃𝑖 ∩ 𝑃 𝑗 𝑃𝑖 ∩ 𝑃 𝑗 𝑃𝑖 ∩ 𝑃 𝑗

Fig. 9. Configurations of a cell of a simplex intersecting two hyperplanes 𝑃𝑖 and 𝑃 𝑗 . Green diamond intersections have fixed sign in
the 𝑗-direction. Only for pathological errors when the two simplices have very different aspect ratios does one see four intersections
between 𝑋 and 𝑃𝑖 ∩ 𝑃 𝑗 .

Fig. 10. Extreme pathological example displaying some properties of failure of cut-convexity. (Left) A nearly flat tetrahedron intersects
a reference tetrahedron. (Right) The flat tetrahedron transformed to a reference tetrahedron, showing the polytope representing the
intersection of the two tetrahedrons.

It is not clear that having this cut-convexity property is strictly necessary for the proof of consistency. The property is

used when considering cells of sections, which are 3D objects, and their sectioning by two hyperplanes. Any intersections

found should lie along the same 1D space and be adjacent to every other intersection. Furthermore, it is always true

that sectioning by a third hyperplane will always result in a single intersection, regardless of error, thanks to the
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combinatoric representation of the 𝑘-faces. Thus, in all practical aspects, it appears to be identical to the same result

without error.

In what follows, assume that cut-convexity is maintained, either through sufficiently accurate intersection formulas,

restriction to non-pathological simplices, or that the algorithm does so naturally in a way not yet proven.

7.2 Consistency

Theorem 12. If the intersections of Algorithm 2 are cut-convex with respect to the hyperplanes 𝑃𝑖 for all 𝑖 , then the

algorithm is consistent with respect to shape. That is, the number of intersections between 𝑘-faces and collections of

hyperplanes and the signs of their coordinates are internally consistent at every step with all previous steps.

Proof. Consider two sets of intersections, one of 𝑋 with the collection of hyperplanes identified by Γ𝑖 and another

with the collection Γ𝑗 , such that Γ𝑖 is adjacent to Γ𝑗 . To be explicit, suppose 𝑖 ∈ Γ𝑖 , 𝑖 ∉ Γ𝑗 , 𝑗 ∈ Γ𝑗 , and 𝑗 ∉ Γ𝑖 . The two sets

are consistent if sectioning the first with 𝑃 𝑗 gives the same set of intersections as sectioning the second with 𝑃𝑖 . That is,

if there exists an adjacent pair (𝐽1, 𝐽2) such that sign(q𝐽1Γ𝑖 · e𝑗 ) ≠ sign(q𝐽2Γ𝑖 · e𝑗 ), then there exists an adjacent pair (𝐽3, 𝐽4)
such that sign(q𝐽3Γ𝑗 · e𝑖 ) ≠ sign(q𝐽4Γ𝑗 · e𝑖 ). We seek to prove this statement.

By Proposition 4 a convex polytope sectioned by a hyperplane results in a convex polytope. The polytopes of

Algorithm 2 are assumed to be cut-convex with respect to the hyperplanes 𝑃𝑖 rather than convex. However, if a

cut-convex polytope and a convex polytope share a graph and those polytopes and their graphs are sectioned in the

same way then the resulting polytopes will again share a graph. Thus, every intersection q𝐽Γ is a vertex of a cut-convex
polytope. If this polytope has dimension 𝑛 > 1 then the intersection is a vertex of 𝑛 − 1 closed cycles of intersections.

Since 𝐽1 and 𝐽2 are adjacent, there exist pairs of adjacent sets (𝐾1, 𝐾2) and (𝐾3, 𝐾4) such that

sign(q𝐾1Γ · e𝑖 ) ≠ sign(q𝐾2Γ · e𝑖 ), 𝐾1 ∪ 𝐾2 = 𝐽1,

sign(q𝐾3Γ · e𝑖 ) ≠ sign(q𝐾4Γ · e𝑖 ), 𝐾3 ∪ 𝐾4 = 𝐽2,

sign(q𝐾1Γ · e𝑖 ) = sign(q𝐾4Γ · e𝑖 ), Γ ∪ {𝑖} = Γ𝑖 ,

sign(q𝐾2Γ · e𝑖 ) = sign(q𝐾3Γ · e𝑖 ), Γ ∪ { 𝑗} = Γ𝑗 ,

and these four sets lie on the same cycle and share all but two elements. Furthermore, since sign(q𝐽1Γ𝑖 · e𝑗 ) ≠ sign(q𝐽2Γ𝑖 · e𝑗 ),
at least one of the four intersections has a different sign in the 𝑗-direction. Thus, there are two edges of the cycle that

intersect the hyperplane 𝑃 𝑗 . This gives the existence of a pair (𝐽3, 𝐽4). It remains to prove it satisfies the statement. This

is done by proving Algorithm 2 correctly codifies the configurations of Figure 11.

If the sets 𝐽3 and 𝐽4 are not identical to 𝐽1 and 𝐽2, then the signs in both directions are inherited from those of the

’parent’ intersections. For example, since 𝐽3 is distinct from 𝐽1, the edge it lies on does not connect 𝐾1 to 𝐾2. Likewise, it

does not connect 𝐾3 to 𝐾4. However, 𝐾4 and 𝐾1 lie on the same cycle and so the edge of 𝐽3 lies between them. Since

sign(q𝐾1Γ · e𝑖 ) = sign(q𝐾4Γ · e𝑖 ) all edges between them lie on the same side of 𝑃𝑖 , and so does q𝐽3Γ𝑗 . The left of Figure 11
shows exactly this behaviour.

This leaves two cases to consider: 𝐽1 = 𝐽4 and either 𝐽2 ≠ 𝐽3 or 𝐽2 = 𝐽3. This first equality, true in both cases,

implies there exists intersections of the 𝑘-face 𝐽1 with the two collections of hyperplanes Γ𝑖 and Γ𝑗 . By Lemma 8,

sign(q𝐽1Γ𝑗 · e𝑖 ) = sign(q𝐽1Γ𝑖 · e𝑗 ) ⊗ sign(q𝐾1Γ · e𝑖 ) ⊗ sign(q𝐾2Γ · e𝑗 ) . Also, in both cases sign(q𝐾2Γ · e𝑗 ) = sign(q𝐾3Γ · e𝑗 ).
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𝑃 𝑗

𝑃𝑖

q𝐾1Γ q𝐾2Γ

q𝐾3Γq𝐾4Γ

q𝐽1Γ𝑖

q𝐽2Γ𝑖

q𝐽3Γ𝑗

q𝐽4Γ𝑗

𝑃 𝑗

𝑃𝑖

q𝐾1Γ

q𝐾2Γ

q𝐾3Γq𝐾4Γ

q𝐽1Γ𝑖

q𝐽2Γ𝑖

q𝐽3Γ𝑗 q𝐽1Γ𝑗
𝑃 𝑗

𝑃𝑖

q𝐾1Γ

q𝐾2Γ

q𝐾3Γ

q𝐾4Γ

q𝐽1Γ𝑖

q𝐽2Γ𝑖

q𝐽1Γ𝑗q𝐽2Γ𝑗

Fig. 11. Configurations of a cycle of intersections with respect to two hyperplanes. The dashed lines represent all edges between the
given intersections, which may number as low as zero (though this would exclude the left-most configuration).

If 𝐽2 ≠ 𝐽3, see middle of Figure 11, then q𝐾4Γ lies between q𝐽2Γ𝑗 and q𝐽3Γ𝑖 on the cycle. Thus,

sign(q𝐽3Γ𝑗 · e𝑖 ) = sign(q𝐾4Γ · e𝑖 ) = sign(q𝐾1Γ · e𝑖 )

= sign(q𝐽1Γ𝑗 · e𝑖 ) ⊗ sign(q𝐽1Γ𝑖 · e𝑗 ) ⊗ sign(q𝐾2Γ · e𝑗 )

= sign(q𝐽1Γ𝑗 · e𝑖 ) ⊗ sign(q𝐽1Γ𝑖 · e𝑗 ) ⊗ sign(q𝐾3Γ · e𝑗 )

= sign(q𝐽1Γ𝑗 · e𝑖 ) ⊗ sign(q𝐽1Γ𝑖 · e𝑗 ) ⊗ sign(q𝐽2Γ𝑖 · e𝑗 )

≠ sign(q𝐽1Γ𝑗 · e𝑖 ),

giving the desired relationship.

If 𝐽2 = 𝐽3, see right of Figure 11, then Lemma 8 applies again and

sign(q𝐽2Γ𝑗 · e𝑖 ) = sign(q𝐽2Γ𝑖 · e𝑗 ) ⊗ sign(q𝐾3Γ · e𝑗 ) ⊗ sign(q𝐾4Γ · e𝑖 )

≠ sign(q𝐽1Γ𝑖 · e𝑗 ) ⊗ sign(q𝐾2Γ · e𝑗 ) ⊗ sign(q𝐾1Γ · e𝑖 ) = sign(q𝐽1Γ𝑗 · e𝑖 ),

again giving the desired relationship. □

The proof of Theorem 12 identifies those aspects of any algorithm that would provide robustness: maintaining

cut-convexity; dividing vertices and intersections into negative and non-negative half-spaces, and; connecting the signs

through equation (4.2), Corollary 6, and Lemma 8.

The shape remains consistent, but may differ from exact results by a small polytope. The size of this small polytope

is dictated by the methods used to calculate the coordinate transformation and the intersections, as well as the aspect

ratio of 𝑉 and the difference in size of the two simplices.

8 Numerical examples

This section aims to stress test the algorithm on numerical examples generalized from one found in [7]. There, an

integer number of congruent triangles are placed in a wheel, then a copy is made and shifted and rotated infinitesimally.

The intersection algorithm is then tested on the intersections between the two wheels.
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Fig. 12. Two icosahedral meshes, each containing 20 tetrahedra, to be intersected. One is a slight affine transformation of the other.

The generalization in higher dimensions is to use regular polytopes with simplicial facets, set an additional point at

the centre of the polytopes and extend edges between this centre and each vertex of the polytope. This forms several

congruent simplices arranged within a hypersphere of unit radius. In 3D, the icosahedron is divided into 20 tetrahedra.

In 4D, the 600-cell is divided into 600 4-simplices. There are no higher dimensional equivalents beyond 4D. The copy

of the mesh is rotated 𝜃 degrees in all directions and translated 𝜖 . The 3D example is shown in Figure 12. To avoid

unnecessary intersections, the intersection algorithm is paired with an advancing front algorithm.

Figure 13 gives histograms of this example using 𝜃 = 0.01 and 𝜖 = 1𝑒 − 3, run in MATLAB. In 3D, of 400 possible

tetrahedral intersections, 156 are non-empty. In 4D, of 360,000 possible 4-simplicial intersections, 24,596 are non-

empty. Volumes are computed using the built-in convhull() function. Hypervolumes are computed using the built-in

convhulln() function with option ‘Qj’, which ‘jiggles’ the inputs if they appear to be coplanar. This option limits the

level of accuracy possible for very thin intersections, which are common in this example.

The exact intersections are unknown. Instead, comparison is made against the established Sutherland-Hodgman

algorithm [1, 13]. Both algorithms use Lemma 5 for intersection calculations, which most likely can be improved upon.

Results show the two algorithms are comparable, up to the precision of the volume and hypervolume calculations.

It is also possible to compare computation time of these two algorithms. Figure 14 shows histograms of the relative

speed-up of Algorithm 2 over the Sutherland-Hodgman algorithm. The medians of these datasets are shown as solid

red lines, while a speed-up of 1, representing equal time between the two algorithms, appears as dashed black lines.

On the majority of individual calculations, Sutherland-Hodgman is faster, as measured by the distance between a

relative speed-up of 1 and the median of the dataset. However, this distance is small relative to the variance of the

speed-ups. In 3D, the majority of speed-ups are within 133%, meaning ParSIA takes only 33% extra time for most

intersections. Speed-ups were as low as 2.66% and as high as 1600%. In 4D, the majority of speed-ups are within 219%.

Speed-ups were as low as 1.81 × 10−4% and as high as 9980%.
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Fig. 13. Difference in volume and hypervolume between Sutherland-Hodgman and ParSIA in solving the described example with
𝜃 = 0.01 and 𝜖 = 1𝑒 − 3. (Left) 3D icosahedral mesh. (Right) 4D 600-cell mesh.

Fig. 14. Relative computation time of ParSIA over Sutherland-Hodgman in solving the same example. (Left) 3D icosahedral mesh.
(Right) 4D 600-cell mesh.

This tells us that, while any given calculation is best handled by Sutherland-Hodgman, for those instances when

ParSIA is faster, it tends to be significantly faster. This can change the overall speed of this example, which involves

several hundred such calculations in 3D and several thousand in 4D. In 3D, the total time to compute this example
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Table 3. Coordinates of sample 4-simplices𝑈 and𝑉 .

Coord. 𝑈 Coord. 𝑉

1st 0 -1 -0.8090 -0.8090 -0.8090 1st 0.0010 -0.9989 -0.8161 -0.8159 -0.8519

2nd 0 0 0.5000 0 0.3090 2nd 0.0010 -0.0090 0.4897 -0.0153 0.2969

3rd 0 0 0.3090 0.5000 0 3rd 0.0010 -0.0090 0.3069 0.4897 -0.0091

4th 0 0 0 0.3090 0.5000 4th 0.0010 -0.0090 0.0010 0.3069 0.4959

Table 4. Initial information determined from vertices of 𝑋 and their signs.

𝑗

0 1 2 3 4

𝑖

0 1 0 1 1 1

1 1 1 0 0 0

2 0 1 1 1 1

3 0 1 0 1 1

4 0 1 1 1 1

(a) sign(x𝑗 · e𝑖 ) .

𝐽

01 02 12 03 13 23 04 14 24 34

Γ

0 1 1 1 1

1 1 1 1 1 1 1

2 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1

(b) ∃q𝐽Γ? 1 indicates yes.

was 134% longer for ParSIA than for Sutherland-Hodgman. In 4D, the total time for ParSIA was 7.24% the time for

Sutherland-Hodgman, making it significantly faster.

Because of the advancing front algorithm and differences in their calculations, both algorithms performed calculations

to confirm empty intersections that were not performed by the other. This cannot be represented in the comparison of

computation time for individual intersections, but it is included in the comparison of total computation time.

It is worth noting that this implementation of ParSIA prioritizes simplifying the structure of the code rather than its

efficiency, making it easier to understand. In particular, the size of the output is not pre-allocated, which accounts for

the most time of any single line of code. As well, the combinatorial subroutines used to organize the index sets for both

𝑘-faces and hyperplanes make use of a global variable. These design choices leave room for improvement.

To show how ParSIA works, consider two of the 4-simplices from this example that intersect. Their coordinates are

presented in Table 3. These coordinates are transformed such that𝑉 is set as the reference simplex 𝑌 and𝑈 becomes the

simplex 𝑋 . The binary signs of its barycentric coordinates are found in Table 4a. No vertex has a column of 1’s, meaning

none lie within 𝑌 . Using the signs from Table 4a, one can produce Table 4b, showing which edges of 𝑋 intersect which

hyperplanes of 𝑌 . Blank entries indicate no intersection and the possibility of sign inheritance.

A total of 24 intersections are found, each with four non-zero coordinates. Table 5a gives the signs for all intersections

on the edge indexed by 𝐽 = {0, 1}. The symbol ∗ indicates the sign is inherited, while † indicates the use of Lemma 8. If

no symbol is displayed, the sign is found through direct calculation of the coordinate. The lower triangle of this table

is found from the upper triangle through Lemma 8, while the second column is found through inheritance, since no

intersection for the plane 𝑃1 was found. This has left only six of the 16 signs to compute directly. From this table, the

intersections q01
0
and q01

2
lie within 𝑌 and form part of the intersection 𝑍 . Three additional coordinates must then be

computed directly and equation (4.3) applied. Table 5a is repeated for each edge 𝐽 . From Table 5a and its counterparts

for all edges 𝐽 , one can deduce the existence of intersections between faces of 𝑋 and pairs of hyperplanes of 𝑌 , see

Table 5b. No intersections are found for hyperplane pairs Γ = {0, 1}, {0, 2}, {1, 2} or {0, 4}, nor for faces 𝐽 = {1, 3, 4} or
{2, 3, 4}.
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Table 5. Information concerning first generation intersections.

𝑖

0 1 2 3 4

Γ

0 1
∗

1 1 1

1

2 1
†

1
∗

1 1

3 1
†

1
∗

0
†

0

4 1
†

1
∗

0
†

1
†

(a) sign(q01Γ · e𝑖 ) .

𝐽

012 013 023 123 014 024 124 034

Γ

03 1 1 1

13 1 1 1 1 1

23 1 1 1 1

14 1 1 1 1

24 1 1 1 1

34 1 1 1 1

(b) ∃q𝐽Γ? 1 indicates yes.

Table 6. Information concerning second and third generation intersections.

𝑖

0 1 2 3 4

Γ

03 1
∗

1
∗

1
∗

23 1
†

1
∗

0

14 1
∗

1
∗

0
∗

24 1
∗

1
∗

1
†

34 1
∗

1
∗

1
†

(a) sign(q012Γ · e𝑖 ) .

𝑖

0 1 2 3 4

q0123
134

1
∗

1
∗

q0234
134

1
∗

1
∗

q0124
234

1
∗

1
∗

q0234
234

1
∗

1
∗

(b) sign(q𝐽Γ · e𝑖 ) .

As before, consider the specific face 012 and its five intersections. Their signs are found in Table 6a, which indicates

q012
03

, q012
24

and q012
34

are corners of 𝑍 . All nine of their coordinates must be calculated directly.

There are then the cells of 𝑋 which intersect the lines formed by three hyperplanes of 𝑌 . By comparing signs, only

four intersections are found: q0123
134

, q0234
134

, q0124
234

, and q0234
234

. Table 6b gives their signs, all of which were determined

through inheritance. All four are corners of 𝑍 , requiring calculation of their coordinates and application of equation

(4.3). Each of the two lines, indexed by Γ = {1, 3, 4} and {2, 3, 4}, has two intersections with 𝑋 . Neither of these pairs of

intersections bounds either vertex along their respective lines, meaning no vertices of 𝑌 lie within 𝑋 . This completes

the intersection algorithm.

9 Conclusion

Intersection algorithms are crucial components in many applications. While efficiency is a priority for most of these

applications, a lack of robustness can pose serious issues. As found in [7] an inconsistent intersection algorithm can

completely invalidate results.

Algorithm 2 has been written under the principle of parsimony to ensure consistency. This consistency is proven in

Theorem 12. All results from the algorithm correspond to two intersecting simplices. While these may not be exactly

the two simplices given as input to the algorithm, they are within numerical error of them.

To this last point, the accuracy of the algorithm depends strongly on how the intersections between 𝑘-faces and

hyperplanes are calculated. Several options are available, including the one presented in this paper, see Lemma 5, though

this option is not ideal. Also important for accuracy is the coordinate transformation, see equation (2.1), which can be

treated as the calculation of the barycentric coordinates of one simplex relative to the other.
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The efficiency of the algorithm depends on its implementation. Some concerns in this regard have been mentioned

in this paper in Section 6. Other concerns include determining which intersections are adjacent and how best to loop

through the collections of hyperplanes. Additional work on using combinatorial representations to solve these problems

is forthcoming.

A Proof of Lemma 5

Without loss of generality, suppose 𝐽 = {0, . . . , 𝑘}. Write q𝐽Γ in barycentric coordinates of the 𝑘-face of 𝑋 :

q𝐽Γ = 𝑋 𝐽 u,

then the vector u satisfies 1⊤u = 1. The intersection q𝐽Γ lies on all hyperplanes indexed by Γ, meaning 𝐼⊤Γ q
𝐽

Γ = 0. Put
together, u solves the system [

1⊤

𝐼⊤Γ 𝑋 𝐽

]
u =

[
1

0

]
.

Using Cramer’s rule, the 𝑗-th element of 𝑢, denoted 𝑢 𝑗 and indicating the amount of x𝑗 found in q𝐽Γ , may be written as

𝑢 𝑗 =

����� . . . 1 . . .

𝐼⊤Γ 𝑋 𝐽 < 𝑗 0 𝐼⊤Γ 𝑋 𝐽 > 𝑗

���������� 1⊤𝐼⊤Γ 𝑋 𝐽
�����

=

�����0⊤ 1 0⊤

𝐼⊤Γ 𝑋 𝐽

���������� 1⊤𝐼⊤Γ 𝑋 𝐽
�����

by expanding the determinant along the 𝑗-th column, where 𝑋 𝐽 < 𝑗 are those columns of 𝑋 𝐽 whose indices are less than 𝑗

and 𝑋 𝐽 > 𝑗 those whose indices are greater than 𝑗 .

Now we seek a representation of q𝐽Γ · e𝜂 :

q𝐽Γ · e𝜂 = e⊤𝜂𝑋 𝐽 u =

𝑘∑︁
𝑗=0

e⊤𝜂 x𝑗𝑢 𝑗 =
𝑘∑︁
𝑗=0

�����0⊤ e⊤𝜂 x𝑗 0⊤

𝐼⊤Γ 𝑋 𝐽

���������� 1⊤𝐼⊤Γ 𝑋 𝐽
�����

=

�����e⊤𝜂𝑋 𝐽𝐼⊤Γ 𝑋 𝐽

���������� 1⊤𝐼⊤Γ 𝑋 𝐽
�����
.

The statement of the lemma follows from the fact that the determinant is invariant under transposition.

B Proof of Lemma 8

Let us begin by specifying some notation. Let 𝐾 = 𝐽1 ∩ 𝐽2. Let 𝑘1 ∈ 𝐽1 but 𝑘1 ∉ 𝐽2, and likewise 𝑘2 ∈ 𝐽2, 𝑘2 ∉ 𝐽1. Suppose
there are 𝑠𝑖 − 1 elements of Γ that are smaller than 𝑖 , and 𝑠 𝑗 − 1 elements that are smaller than 𝑗 .

By the assumptions on the 𝑖 and 𝑗-coordinates of q𝐽1Γ and q𝐽2Γ , one may write

sign

(
q𝐽1Γ · e𝑖 − q

𝐽2
Γ · e𝑖

q𝐽1Γ · e𝑗 − q
𝐽2
Γ · e𝑗

)
= sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽1Γ · e𝑗 )

= sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) ⊗ 0.
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We may expand the left hand side using Lemma 5, then simplify:

sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) ⊗ 0 = sign

©­­­­­­­­«

����𝑋⊤𝐽1 e𝑖 𝑋⊤
𝐽1
𝐼Γ

��������1 𝑋⊤
𝐽1
𝐼Γ

���� −
����𝑋⊤𝐽2 e𝑖 𝑋⊤

𝐽2
𝐼Γ

��������1 𝑋⊤
𝐽2
𝐼Γ

��������𝑋⊤𝐽1 e𝑗 𝑋⊤
𝐽1
𝐼Γ

��������1 𝑋⊤
𝐽1
𝐼Γ

���� −

����𝑋⊤𝐽2 e𝑗 𝑋⊤
𝐽2
𝐼Γ

��������1 𝑋⊤
𝐽2
𝐼Γ

����

ª®®®®®®®®¬
= sign

©­­«
���𝑋⊤
𝐽1
e𝑖 𝑋⊤

𝐽1
𝐼Γ

��� ���1 𝑋⊤
𝐽2
𝐼Γ

��� − ���𝑋⊤
𝐽2
e𝑖 𝑋⊤

𝐽2
𝐼Γ

��� ���1 𝑋⊤
𝐽1
𝐼Γ

������𝑋⊤
𝐽1
e𝑗 𝑋⊤

𝐽1
𝐼Γ

��� ���1 𝑋⊤
𝐽2
𝐼Γ

��� − ���𝑋⊤
𝐽2
e𝑗 𝑋⊤

𝐽2
𝐼Γ

��� ���1 𝑋⊤
𝐽1
𝐼Γ

��� ª®®¬ .
Next, we perform elementary operations to move the rows associated with 𝑘1 ∈ 𝐽1 and 𝑘2 ∈ 𝐽2 to the top of their

respective matrices. Since we do this to all matrices there is no change in sign. Then we may write

sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) ⊗ 0

= sign

©­­­­­­«

�����x⊤𝑘1e𝑖 x⊤
𝑘1
𝐼Γ

𝑋⊤
𝐾
e𝑖 𝑋⊤

𝐾
𝐼Γ

�����
�����1 x⊤

𝑘2
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

����� −
�����x⊤𝑘2e𝑖 x⊤

𝑘2
𝐼Γ

𝑋⊤
𝐾
e𝑖 𝑋⊤

𝐾
𝐼Γ

�����
�����1 x⊤

𝑘1
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

����������x⊤𝑘1e𝑗 x⊤
𝑘1
𝐼Γ

𝑋⊤
𝐾
e𝑗 𝑋⊤

𝐾
𝐼Γ

�����
�����1 x⊤

𝑘2
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

����� −
�����x⊤𝑘2e𝑗 x⊤

𝑘2
𝐼Γ

𝑋⊤
𝐾
e𝑗 𝑋⊤

𝐾
𝐼Γ

�����
�����1 x⊤

𝑘1
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

�����
ª®®®®®®¬
.

We may use the Schur complement to expand some of the determinants:�����1 x⊤
𝑘1
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

����� = ���𝑋⊤
𝐾
𝐼Γ

��� (1 − x⊤𝑘1 𝐼Γ (
𝑋⊤𝐾 𝐼Γ

)−1
1
)
,�����1 x⊤

𝑘2
𝐼Γ

1 𝑋⊤
𝐾
𝐼Γ

����� = ���𝑋⊤
𝐾
𝐼Γ

��� (1 − x⊤𝑘2 𝐼Γ (
𝑋⊤𝐾 𝐼Γ

)−1
1
)
.

This allows us to put the terms of the previous equation into a single determinant, with the term

���𝑋⊤
𝐾
𝐼Γ

��� cancelling out,

as it appears in both numerator and denominator:

sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) ⊗ 0 = sign

©­­­­­­­­­­­­­­«

���������
1 − x⊤

𝑘2
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 x⊤

𝑘2
e𝑖 x⊤

𝑘2
𝐼Γ

1 − x⊤
𝑘1
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 x⊤

𝑘1
e𝑖 x⊤

𝑘1
𝐼Γ

0 𝑋⊤
𝐾
e𝑖 𝑋⊤

𝐾
𝐼Γ

������������������
1 − x⊤

𝑘2
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 x⊤

𝑘2
e𝑗 x⊤

𝑘2
𝐼Γ

1 − x⊤
𝑘1
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 x⊤

𝑘1
e𝑗 x⊤

𝑘1
𝐼Γ

0 𝑋⊤
𝐾
e𝑗 𝑋⊤

𝐾
𝐼Γ

���������

ª®®®®®®®®®®®®®®¬
.
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Add a linear combination of the columns to cancel out part of the Schur complement:

sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) ⊗ 0

= sign

©­­­­­­­­­­­­«

��������
1 x⊤

𝑘2
e𝑖 x⊤

𝑘2
𝐼Γ

1 x⊤
𝑘1
e𝑖 x⊤

𝑘1
𝐼Γ

𝑋⊤
𝐾
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 𝑋⊤

𝐾
e𝑖 𝑋⊤

𝐾
𝐼Γ

����������������
1 x⊤

𝑘2
e𝑗 x⊤

𝑘2
𝐼Γ

1 x⊤
𝑘1
e𝑗 x⊤

𝑘1
𝐼Γ

𝑋⊤
𝐾
𝐼Γ

(
𝑋⊤
𝐾
𝐼Γ

)−1
1 𝑋⊤

𝐾
e𝑗 𝑋⊤

𝐾
𝐼Γ

��������

ª®®®®®®®®®®®®¬
= sign

©­­­­­­­­­­­«

�������
1 x⊤

𝑘2
e𝑖 x⊤

𝑘2
𝐼Γ

1 x⊤
𝑘1
e𝑖 x⊤

𝑘1
𝐼Γ

1 𝑋⊤
𝐾
e𝑖 𝑋⊤

𝐾
𝐼Γ

��������������
1 x⊤

𝑘2
e𝑗 x⊤

𝑘2
𝐼Γ

1 x⊤
𝑘1
e𝑗 x⊤

𝑘1
𝐼Γ

1 𝑋⊤
𝐾
e𝑗 𝑋⊤

𝐾
𝐼Γ

�������

ª®®®®®®®®®®®¬
.

It remains to perform the elementary operations that move the first two rows and the second column into their

appropriate positions. The rows are done to both numerator and denominator and therefore do not cause a change in

sign. To move the columns there are 𝑠𝑖 − 1 exchanges to the numerator and 𝑠 𝑗 − 1 to the denominator. This results in

sign

©­­«
���1 𝑋⊤

𝐽1∪𝐽2 𝐼Γ∪{𝑖 }

������1 𝑋⊤
𝐽1∪𝐽2 𝐼Γ∪{ 𝑗 }

��� ª®®¬ = 0
⊗𝑠𝑖+𝑠 𝑗 −1 ⊗ sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) .

Using Lemma 5 we can make the following relations:

sign
©­«
q𝐽1∪𝐽2
Γ∪{𝑖 } · e𝑗

q𝐽1∪𝐽2
Γ∪{ 𝑗 } · e𝑖

ª®¬ = sign

©­­«
���𝑋⊤
𝐽1∪𝐽2e𝑗 𝑋⊤

𝐽1∪𝐽2 𝐼Γ∪{𝑖 }

������1 𝑋⊤
𝐽1∪𝐽2 𝐼Γ∪{𝑖 }

���
���1 𝑋⊤

𝐽1∪𝐽2 𝐼Γ∪{ 𝑗 }

������𝑋⊤
𝐽1∪𝐽2e𝑖 𝑋⊤

𝐽1∪𝐽2 𝐼Γ∪{ 𝑗 }

��� ª®®¬
=0⊗𝑠𝑖+𝑠 𝑗 −1 ⊗ sign

©­­«
���𝑋⊤
𝐽1∪𝐽2 𝐼Γ∪{𝑖, 𝑗 }

������𝑋⊤
𝐽1∪𝐽2 𝐼Γ∪{𝑖, 𝑗 }

���
���1 𝑋⊤

𝐽1∪𝐽2 𝐼Γ∪{ 𝑗 }

������1 𝑋⊤
𝐽1∪𝐽2 𝐼Γ∪{𝑖 }

��� ª®®¬
= sign(q𝐽1Γ · e𝑖 ) ⊗ sign(q𝐽2Γ · e𝑗 ) .

This is equivalent to the statement of the lemma.
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