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Abstract. Optimized Schwarz methods use Fourier analysis to find transmission conditions3
between subdomains that provide faster convergence over standard Schwarz methods. However, this4
requires significant upfront analysis of the operator, and may not be straightforward for all problems.5
This work presents a new class of black box methods for adaptively optimizing the transmission6
conditions. This class of methods is shown to be part of the Krylov subspace family of methods.7
Analysis and examples show the effectiveness of these methods, especially in situations with multiple8
right hand sides for the same system.9
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1. Introduction. Schwarz methods subdivide the domain of a problem into13

subdomains and solve the resulting subproblems repeatedly to iteratively solve the14

global problem. A core component of this iterative process is the transmission of15

information between the subdomains. This is done using transmission conditions,16

essentially boundary conditions that apply on the interface between subdomains.17

The simplest transmission conditions are Dirichlet conditions, transmitting the18

solution at the interface directly from one subdomain to another. However, these come19

with limitations. There must be at least a minimal overlap between the subdomains20

or the iterative process will stagnate. Convergence is also suboptimal.21

Neumann conditions allow for non-overlapping subdomains but can also be sub-22

optimal. A combination of Neumann and Dirichlet conditions, Robin boundary con-23

ditions, has been shown to be significantly faster at converging all modes in the24

iterative process, assuming the Robin parameter is chosen well. Schwarz methods25

that use these transmission conditions are known as zero-th order optimized Schwarz26

methods (OSMs) [5]. Higher order OSMs can be constructed, in particular second27

order, but this can be cumbersome.28

While OSMs are locally optimized, there exist optimal transmission conditions29

that reduce the iterative process to a finite number of steps, generally two. These are30

known as absorbing boundary conditions [6, 7, 9, 3]. Algebraically, they are equivalent31

to using the Schur complement. As such, they are prohibitively expensive to compute.32

Several workarounds have been proposed to approximate these transmission conditions33

in various applications [4, 26, 19, 1, 13].34

In this paper, we develop a procedure to construct algebraic approximations to35

these absorbing boundary conditions through sequential rank one updates while also36

producing an accurate solution. The resulting conditions can be re-used in restarts,37

subsequent time steps, or similar problems to significantly reduce the number of itera-38

tions required. We show this procedure is a Krylov subspace method, and in particular39

it constructs a sequence of vectors numerically equivalent to those of GMRES.40

A spectral version of this algorithm, using probing, has been studied in [12].41

There, a set of probing vectors, usually representing Fourier modes expected to be42
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problematic to the method, are decomposed into eigenvectors via the power iteration.43

The transmission conditions are then optimized with these vectors in mind.44

2. Adaptive optimization.45

2.1. Adaptive transmission conditions. Consider a linear system of the form46

47

(2.1)A11 A1Γ

AΓ1 AΓΓ AΓ2

A2Γ A22

u1

uΓ

u2

 =

f1fΓ
f2

 , A11 ∈ RN1×N1 , A22 ∈ RN2×N2 , AΓΓ ∈ RM×M .48

For large N = N1 +N2 +M , solving this system is costly in terms of both time and49

computational power. We break up the system into two subdomains which are solved50

iteratively using an algebraic Schwarz method. The two subproblems are51 [
A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

] [
un+1
1

un+1
1Γ

]
=

[
f1
fΓ

]
−
[
AΓ2u

n
2

]
+

[
Tn+1
2→1u

n
2Γ

]
,(2.2)52 [

A22 A2Γ

AΓ2 AΓΓ + Tn+1
1→2

] [
un+1
2

un+1
2Γ

]
=

[
f2
fΓ

]
−
[
AΓ1u

n
1

]
+

[
Tn+1
1→2u

n
1Γ

]
,(2.3)53

where Tn+1
1→2 and Tn+1

2→1 are transmission conditions between the subdomains. These54

conditions are allowed to change at each iteration, allowing them to adapt. We refer55

to the iterative solving of these systems with changing transmission conditions as56

adaptive optimized Schwarz methods (AOSMs).57

Let us note here the difference between additive Schwarz methods and multi-58

plicative Schwarz methods. In a multiplicative Schwarz method, the subproblems are59

solved sequentially, such that equation (2.2) is solved using n = k, then equation (2.3)60

is solved using n = k + 1, then equation (2.2) again using n = k + 2, and so on. In61

this way, n is always odd for equation (2.2) and always even for equation (2.3), or62

vice versa. In an additive Schwarz method, the subproblems are solved in parallel,63

such that both equations are solved for all values of n. While at first glance this64

appears faster, in most formulations this is equivalent to the sum of multiplicative65

non-interacting Schwarz methods and will therefore converge at the rate of the slow-66

est of them. The advantage is its ability to be parallelized and produce a solution67

everywhere at any given iteration, albeit without improved precision.68

If the transmission conditions are fixed, then the result is identically Schwarz69

methods. It is well established that under reasonable conditions the limit of un
i is ui70

[5, 3]. As stated in the introduction, there are optimal choices of Tn+1
1→2 and Tn+1

2→1 ,71

namely72

Tn+1
1→2 = S1→2 := −AΓ1A

−1
11 A1Γ, Tn+1

2→1 = S2→1 := −AΓ2A
−1
22 A2Γ,73

the Schur complements which represent absorbing boundary conditions. There are74

also optimized transmission conditions used in OSMs, such as Tn+1
1→2 = Tn+1

2→1 =75

− 1
2AΓΓ + pI, which are Robin boundary conditions for the Laplace equation dis-76

cretized by finite differences on a uniform rectilinear grid [5, 9, 8].77

One can reformulate the iterative process to construct a sequence of difference78

vectors that are added onto the initial guess. This is generally more stable numerically79

because the magnitude of the right hand side decreases as the solution approaches80

the limit. It will also be useful for our purposes to consider this sequence of vectors.81
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To reformulate equations (2.2) and (2.3), we consider the matrix for the (n + 1)–th82

iterate applied to the difference between the (n+1)–th solution and the n–th solution:83 [
A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

]([
un+1
1

un+1
1Γ

]
−
[
un
1

un
1Γ

])
84

=

[
A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

] [
un+1
1

un+1
1Γ

]
−
[
A11 A1Γ

AΓ1 AΓΓ + Tn
2→1

] [
un
1

un
1Γ

]
−
[

∆Tn
2→1

] [
un
1

un
1Γ

]
85

=

[
f1
fΓ

]
−
[
AΓ2u

n
2

]
+

[
Tn+1
2→1u

n
2Γ

]
−
([

f1
fΓ

]
−
[
AΓ2u

n−1
2

]
+

[
Tn
2→1u

n−1
2Γ

])
86

−
[
∆Tn

2→1u
n
1Γ

]
,87

88

(2.4)[
A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

] [
dn+1
1

dn+1
1Γ

]
= −

[
AΓ2d

n
2

]
+

[
Tn+1
2→1d

n
2Γ

]
−
[
∆Tn

2→1(u
n
1Γ − un−1

2Γ )

]
,89

where ∆Tn
i→j is the update to the transmission conditions Tn

i→j , such that Tn+1
i→j =90

Tn
i→j +∆Tn

i→j and dn+1
ν = un+1

ν − un
ν . Likewise, in the second subdomain,91

(2.5)[
A22 A2Γ

AΓ2 AΓΓ + Tn+1
1→2

] [
dn+1
2

dn+1
2Γ

]
= −

[
AΓ1d

n
1

]
+

[
Tn+1
1→2d

n
1Γ

]
−
[
∆Tn

1→2(u
n
2Γ − un−1

1Γ )

]
.92

Note that if the transmission conditions are fixed, then ∆Tn
i→j is zero.93

We will use the indices i and j to differentiate between the two subdomains.94

Thus, i = 1 or 2 and j = 3 − i. Equations that use i and j as indices apply in both95

subdomains.96

Note that the top block rows in both equation (2.4) and (2.5) have null right hand97

sides. The corresponding vectors can therefore be eliminated:98

(2.6) dn+1
1 = −A−1

11 A1Γd
n+1
1Γ , dn+1

2 = −A−1
22 A2Γd

n+1
2Γ .99

This process is referred to in finite element method literature as static condensation100

or, more rarely, Guyan reduction [18]. The resulting equations, which define the101

sequence of differences exclusively on the interface between subdomains, are102 (
AΓΓ + S1→2 + Tn+1

2→1

)
dn+1
1Γ =

(
Tn+1
2→1 − S2→1

)
dn
2Γ −∆Tn

2→1

(
un
1Γ − un−1

2Γ

)
,103 (

AΓΓ + S2→1 + Tn+1
1→2

)
dn+1
2Γ =

(
Tn+1
1→2 − S1→2

)
dn
1Γ −∆Tn

1→2

(
un
2Γ − un−1

1Γ

)
.104

The sequence of differences is then dependent on the difference between the current105

transmission conditions, Tn
i→j , and the optimal transmission conditions, Si→j . Let us106

denote this difference, the ‘error’ in the transmission conditions, as En
i→j = Tn

i→j −107

Si→j . Let us also denote Â := AΓΓ + S1→2 + S2→1, which is the condensation of108

the matrix of equation (2.1) to the interface using Schur complements. The previous109

equations may then be written as110 (
Â+ En+1

2→1

)
dn+1
1Γ =En+1

2→1d
n
2Γ −∆Tn

2→1

(
un
1Γ − un−1

2Γ

)
,(2.7)111 (

Â+ En+1
1→2

)
dn+1
2Γ =En+1

1→2d
n
1Γ −∆Tn

1→2

(
un
2Γ − un−1

1Γ

)
.(2.8)112
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At this stage, ∆Tn
i→j is unknown. We do not know yet how to adapt the transmission113

conditions in an optimal way.114

We may also examine the evolution of the error in the solutions by applying the115

same process to the difference between the numerical and exact solutions:116 [
A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

]([
un+1
1

un+1
1Γ

]
−
[
u1

uΓ

])
=

[
f1
fΓ

]
−
[
AΓ2u

n
2

]
+

[
Tn+1
2→1u

n
2Γ

]
117

−
([

f1
fΓ

]
−
[
AΓ2u2

]
+

[
Tn+1
2→1uΓ

])
118 [

A11 A1Γ

AΓ1 AΓΓ + Tn+1
2→1

] [
en+1
1

en+1
1Γ

]
= −

[
AΓ2e

n
2

]
+

[
Tn+1
2→1e

n
2Γ

]
,119 [

A22 A2Γ

AΓ2 AΓΓ + Tn+1
1→2

] [
en+1
2

en+1
2Γ

]
= −

[
AΓ1e

n
1

]
+

[
Tn+1
1→2e

n
1Γ

]
,120

which may be condensed to121 (
Â+ En+1

2→1

)
en+1
1Γ =En+1

2→1e
n
2Γ,(2.9)122 (

Â+ En+1
1→2

)
en+1
2Γ =En+1

1→2e
n
1Γ.(2.10)123

Assuming Â + En+1
i→j is invertible, there are two ways to reduce the magnitude of124

en+1
jΓ : reducing the magnitude of eniΓ, and; reducing the product of En+1

i→j with eniΓ. In125

particular, if this product is zero, then the solution at the (n+1)–th iteration is exact.126

This is then the goal of adaptive transmission conditions, to increase the nullspace of127

En+1
i→j .128

2.2. Incremental approximations by low rank matrices. As stated above,129

if the matrix En
i→j is zero, then the Schwarz method will converge in the next iteration.130

We therefore seek ways to eliminate this matrix using information obtained during131

the runtime of the Schwarz method. While En
i→j is expensive to compute, the matrix-132

vector product En
i→jd

n
iΓ is cheap. We can express this product as133

(2.11) En
i→jd

n
iΓ =

(
Tn
i→j − Si→j

)
dn
iΓ = −AΓid

n
i + Tn

i→jd
n
iΓ,134

where the last equality is due to equation (2.6).135

Thus, we have a linear relation between two vectors that we do not wish to express136

explicitly. This represents an inverse problem: Given a vector and its image under a137

linear relation, find an approximation for the linear relation. The best that can be138

done is a rank one approximation. Suppose y1 = Ex1 for some matrix E, then139

(2.12) E ≈ y1x
⊤
1

∥x1∥2
.140

Note the use of the Moore-Penrose pseudo-inverse of the vector x1 [20, 21].141

Suppose instead that we have a linearly independent sequence of vectors {xk}nk=1142

and the image of this sequence under the matrix E ∈ RM×M , {yk}nk=1, such that143

(2.13) yk = Exk ∀ 1 ≤ k ≤ n.144

Each vector pair gives its own rank one approximation of E, but the sum of these145

approximations does not form an approximation of E unless the vectors {xk} are or-146

thogonal. If we instead want an approximation of higher rank, we must orthogonalize147
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this set of vectors, and perform commenserate operations on the set {yk}. That is, if148

equation (2.12) is a rank one approximation of E, then let149

w2 = x2 − ⟨x1,x2⟩x1,150

v2 = y2 − ⟨x1,x2⟩y1.151

This describes the modified Gram-Schmidt algorithm applied to the vectors {xk},152

with an identical set of operations applied to {yk}. Then a rank two approximation153

of E is154

E ≈ y1x
⊤
1

∥x1∥2
+

v2w
⊤
2

∥w2∥2
.155

We formalize this process as Algorithm 2.1, which generates a low rank approximation156

of a matrix E. While the matrix E may be expensive to compute, we assume its157

matrix-vector products can be obtained relatively cheaply.

Algorithm 2.1 Iterative action approximation, [Vn,Wn] = IAA ({xk}nk=1 , E)

1: Inputs: {xk}nk=1 ⊂ RM , E ∈ RM×M

2: α1 := 1/ ∥x1∥, w1 := α1x1, v1 := α1Ex1

3: for k = 2 : n do
4: wk := xk, vk := Exk

5: for i = 1 : k − 1 do
6: h← ⟨wi,wk⟩, wk ← wk − hwi

7: vk ← vk − hvi

8: αk := 1/ ∥wk∥, wk ← αkwk, vk ← αkvk

9: Outputs: Wn =
[
w1 w2 . . . wn

]
, Vn =

[
v1 v2 . . . vn

]
10: VnW

⊤
n ≈ E

158

Line 7 implicitly updates the matrix E by removing the image of Wk from the159

output. At each iteration of the algorithm the rank one matrix vkw
⊤
k is subtracted160

from E. This implicit update is useful to us and we seek to codify its properties in161

the following lemma.162

Lemma 2.1. Let S = {xk}nk=1 ⊂ RM be a set of linearly independent vectors,163

E ∈ RM×M a matrix. Let [Vn,Wn] = IAA(S, E), as described in Algorithm 2.1, with164

columns vk and wk, respectively. Let E1 := E and let Ek+1 := Ek − vkw
⊤
k . Then165

Ek+1 =E(I −WkW
⊤
k ),(2.14)166

vk =Ewk = Ekwk(2.15)167

for 1 ≤ k ≤ n, where Wk is the first k columns of Wn.168

Proof. We proceed by induction over k, starting with the base case at k = 1. We169

have that y1 = Ex1 = E1x. Multiplying this equation by α1 gives exactly equation170

(2.15) for k = 1. The matrix E2 then satisfies171

E2 = E1 − v1w
⊤
1 = E

(
I −w1w

⊤
1

)
,172

thus proving equation (2.14) for k = 1.173
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Suppose the statements are true for k < m and consider the case of k = m. By174

assumption, ym = Exm. The construction of wm, which is described in Algorithm 2.1175

and is exactly the modified Gram-Schmidt algorithm, implies176

xm = Wm

[
h
αm

]
,177

for some vector h ∈ Rm−1. Thus,178

ym = E1xm179

= E1Wm

[
h
αm

]
180

=
[
v1 . . . vm−1 E1wm

] [ h
αm

]
by induction181

= Vm−1h+ E1wmαm.182

Meanwhile, the construction of vm in Algorithm 2.1 implies183

αmvm = ym − Vm−1h.184

Combining these results gives the first equality of equation (2.15).185

To prove equation (2.14), consider186

Em+1 = Em − vmw⊤
m187

= E
(
I −Wm−1W

⊤
m−1

)
− vmw⊤

m by induction188

= E
(
I −Wm−1W

⊤
m−1 −wmw⊤

m

)
by equation (2.15), first equality189

= E
(
I −WmW⊤

m

)
190

by orthogonality of {wk}. This then gives the second equality in equation (2.15).191

The matrix I −WnW
⊤
n has some useful properties. It is symmetric, idempotent,192

singular with a nullspace equal to span(Wn), and hasM−n non-zero eigenvalues equal193

to 1 with an eigenspace orthogonal to span(Wn). Since this is true for all n ≤ M , it194

is also true for the individual matrices I −wnw
⊤
n .195

The implicit update to the linear relation E described in Theorem 2.1 will be our196

explicit update ∆Tn
i→j to the transmission conditions:197

∆Tn
i→j = Tn+1

i→j − Tn
i→j198

= En+1
i→j − En

i→j199

= −vn
i (w

n
i )

⊤,(2.16)200

where the vectors vn
i and wn

i are the last columns of the matrices201

(2.17) [V n
i ,Wn

i ] = IAA
({

dk
iΓ

}n
k=1

, E1
i→j

)
, where E1

i→jd
k
iΓ = −AΓid

k
i +T 1

i→jd
k
iΓ.202

By subtracting off V k−1
i (W k−1

i )⊤dk
iΓ from the product E1

i→jd
k
iΓ, as is done in the203

course of Algorithm 2.1, we retrieve equation (2.11). Thus, due to Theorem 2.1, we204

may use the two expressions interchangeably.205
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The update of equation (2.16) eliminates the contribution of En+1
i→j d

n
iΓ from equa-206

tions (2.7) and (2.8):207 (
Â+ En+1

i→j

)
dn+1
jΓ = En+1

i→j d
n
iΓ −∆Tn

i→j

(
un
jΓ − un−1

iΓ

)
208

= En
i→jd

n
iΓ +∆Tn

i→jd
n
iΓ −∆Tn

i→j

(
un
jΓ − un−1

iΓ

)
209

=
(
(wn

i )
⊤dn

iΓ

)
vn
i − vn

i (w
n
i )

⊤dn
iΓ + vn

i (w
n
i )

⊤ (un
jΓ − un−1

iΓ

)
210

= vn
i (w

n
i )

⊤ (un
jΓ − un−1

iΓ

)
,211

or, when presented as the full system, to212

(2.18)

[
Ajj AjΓ

AΓj AΓΓ + Tn+1
i→j

] [
dn+1
j

dn+1
jΓ

]
= (wn

i )
⊤ (un

jΓ − un−1
iΓ

) [
vn
i

]
.213

2.3. AOSM algorithms. We may now write the AOSM algorithms using the214

update defined in equation (2.16). We define two types of AOSM: alternating AOSM215

(altAOSM), which modifies multiplicative Schwarz methods where subdomains are216

solved sequentially, and parallel AOSM (paraAOSM), which modifies additive Schwarz217

methods where subdomains are solved in parallel.218

Algorithm 2.2 altAOSM: AOSM applied to multiplicative Schwarz

1: Start with initial transmission conditions T 1
1→2 and T 1

2→1

2: Make initial guess u0
1Γ

3: Calculate u0
1 = A−1

11 (f1 −A1Γu
0
1Γ)

4: Solve equation (2.3) with n = 0
5: Solve equation (2.2) with n = 1
6: Calculate d2

1Γ = u2
1Γ − u0

1Γ and d2
1 and set n = 2

7: while ∥dn
1Γ∥+

∥∥dn−1
2Γ

∥∥ ≥ tol do
8: for i = 1 : 2 do
9: Run an iteration of Algorithm 2.1, see equation (2.17)

10: Set ∆Tn
i→j = −vn

i (w
n
i )

⊤, see equation (2.16)
11: Solve equation (2.18)
12: un+1

j := un−1
j + dn+1

j , un+1
jΓ := un−1

jΓ + dn+1
jΓ

13: n← n+ 1

14: Output: u = [un
1 ; (un

1Γ + un−1
2Γ )/2 ; un−1

2 ]

Equation (2.18) can be replaced with equation (2.2) when i = 2 and equation219

(2.3) when i = 1. The former is a corrector formulation of the latter, as described220

in the preamble to equations (2.4) and (2.5). Using equation (2.18), one must add221

together the difference vectors to arrive at the solution vectors. Using equations (2.2)222

and (2.3), one must subtract sequential solution vectors to compute the difference223

vectors.224

The differences between altAOSM and paraAOSM can be summarized by the225

schemas of Figure 2.1. In altAOSM, in the left of the figure, updates to the transmis-226

sion conditions are generated through a single sequence of iterative subdomain solves.227

In paraAOSM, in the right of the figure, updates are generated by taking differences228

between two sequences of iterative solves.229

3. Practical considerations.230

7
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Algorithm 2.3 paraAOSM: AOSM applied to additive Schwarz

1: Start with initial transmission conditions T 1
1→2 and T 1

2→1

2: Make initial guesses u0
1Γ and u0

2Γ

3: Calculate u0
1 = A−1

11 (f1 −A1Γu
0
1Γ) and equivalently u0

2

4: Solve equations (2.2) and (2.3) with n = 0
5: Calculate d1

1Γ, d
1
1, d

1
2Γ and d1

2 and set n = 1
6: while ∥dn

1Γ∥+ ∥dn
2Γ∥ ≥ tol do

7: for i = 1 : 2 do
8: Run an iteration of Algorithm 2.1, see equation (2.17)
9: Set ∆Tn

i→j = −vn
i (w

n
i )

⊤, see equation (2.16)
10: Solve equation (2.18)
11: un+1

j := un
j + dn+1

j , un+1
jΓ := un

jΓ + dn+1
jΓ

12: n← n+ 1

13: Output: u = [un
1 ; (un

1Γ + un
2Γ)/2 ; un

2 ]

Ω1 Ω2

∆T 3
2→1

∆T 2
1→2

Ω1 Ω2

∆T 1
2→1∆T 1

1→2

∆T 2
2→1∆T 2

1→2

∆T 3
2→1∆T 3

1→2

Fig. 2.1: Schema for calculating the updates to the transmission conditions in the
AOSMs. (Left) altAOSM, Algorithm 2.2; (Right) paraAOSM, Algorithm 2.3.

3.1. Woodbury matrix identity. Updating the system matrices every itera-231

tion prevents the use of factorizations to speed up the system solves. Luckily, since232

the update to the matrices amounts to the addition of low rank matrices, we may233

update the solutions without updating the matrices. To accomplish this, we deploy234

the Woodbury matrix identity [27], a generalisation of the Sherman-Morrison formula235

[24].236

Proposition 3.1 (Woodbury matrix identity). If ũ is the solution to Aũ = b,237

A ∈ RN×N , b ∈ RN , then238

(3.1) u = ũ+A−1V (I −W⊤A−1V )−1W⊤ũ239

is the solution to (A− VW⊤)u = b, where V,W ∈ RN×k, I ∈ Rk×k.240

Equation (2.18), which appears in both altAOSM and paraAOSM, may be rep-241

resented as242

((2.18) revisited)([
Ajj AjΓ

AΓj AΓΓ + T 1
i→j

]
−
[
V n
i

] [
Wn

i

]⊤)[
dn+1
j

dn+1
jΓ

]
= (wn

i )
⊤ (un

jΓ − un−1
iΓ

) [
vn
i

]
.243

Suppose we have some way to speed up the computation of vectors znj and znjΓ and244
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matrices Zn
j and Zn

jΓ with columns znj and znjΓ in245

(3.2)

[
Ajj AjΓ

AΓj AΓΓ + T 1
i→j

] [
znj
znjΓ

]
=

[
vn
i

]
,

[
Ajj AjΓ

AΓj AΓΓ + T 1
i→j

] [
Zn
j

Zn
jΓ

]
=

[
V n
i

]
,246

such as a factorization, and we wish to use it to solve equation (2.18). Then, using247

Theorem 3.1,248 [
dn+1
j

dn+1
jΓ

]
= (wn

i )
⊤ (un

jΓ − un−1
iΓ

)([ znj
znjΓ

]
+

[
Zn
j

Zn
jΓ

] (
I − (Wn

i )
⊤Zn

jΓ

)−1
(Wn

i )
⊤znjΓ

)
249

= (wn
i )

⊤ (un
jΓ − un−1

iΓ

) [Zn
j

Zn
jΓ

](
I +

(
I − (Wn

i )
⊤Zn

jΓ

)−1
(Wn

i )
⊤Zn

jΓ

)[
1

]
250

= (wn
i )

⊤ (un
jΓ − un−1

iΓ

) [Zn
j

Zn
jΓ

] (
I − (Wn

i )
⊤Zn

jΓ

)−1
[
1

]
.(3.3)251

Lemma 3.2. Let n ≥ 1. Let
{
dk
jΓ

}n+1

k=2
be the solutions of equation (2.18). Let252 {

zkjΓ
}n
k=1

be the solutions of equation (3.2), where
{
vk
i

}n
k=1

are the columns of V n
i253

defined in equation (2.17). If these two sets of vectors are linearly independent, then254

span
({

dk
jΓ

}n+1

k=2

)
= span

({
zkjΓ
}n
k=1

)
.255

Proof. We proceed by induction. The base case occurs for n = 1, when V n
i = v1

i256

and Wn
i = w1

i . Then equation (3.3) simplifies to257 [
d2
j

d2
jΓ

]
= β

[
z1j
z1jΓ

]
,258

where β is a non-zero scalar. Thus, d2
jΓ is parallel to z1jΓ.259

Suppose the statement is true for n−1. By equation (3.3) dn+1
jΓ lies in span(Zn

jΓ).260

Let us denote261

dn+1
jΓ =

n∑
k=1

bkz
k
jΓ,262

for some constants bk. By the assumption of linear independence, bn ̸= 0. By in-263

duction, there is a linear combination of the vectors dm
jΓ for 2 ≤ m ≤ k + 1 such264

that265

zkjΓ =

k+1∑
m=2

am,kd
m
jΓ.266

We may now isolate for znjΓ by subtracting all other vectors zkjΓ for k < n from dn+1
jΓ :267

bnz
n
jΓ = dn+1

jΓ −
n−1∑
k=1

bkz
k
jΓ268

= dn+1
jΓ −

n−1∑
k=1

k+1∑
m=2

bkam,kd
m
jΓ.269

Therefore, znjΓ lies in the span of the vectors dk
jΓ.270
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As a corollary to Theorem 3.2, one can replace dn
jΓ in equation (2.17) with zn−1

jΓ271

and still arrive at the same matrixWn+1
j . This removes the update to the transmission272

conditions in the matrices on the left hand side of equations (2.2) and (2.3). Instead,273

only the transmission conditions on the right hand side are updated. This process is274

comparable to the Arnoldi method, in that the search directions are orthogonalized275

and the matrix remains constant.276

3.2. Schur shuffle. The Woodbury matrix identity involves the inversion of277

Bn
i = In×n − (Wn

i )
⊤Zn

jΓ. This is a matrix of size at most n × n and thus relatively278

small and inexpensive to invert. We can still simplify its calculation to make it as279

efficient as possible.280

As n increments throughout an AOSM, the matrix Bn
i increases in size by one281

row and column at a time:282

Bn
i =

[
Bn−1

i −(Wn−1
i )⊤znjΓ

−(wn
i )

⊤Zn−1
jΓ 1− (wn

i )
⊤znjΓ

]
.283

The inverse of Bn
i , (B

n
i )

−1, can be updated by making use of the Schur complement:284

(Bn
i )

−1 =

[
(Bn−1

i )−1
]
+

1

γn

[
sn
1

] [
t⊤n 1

]
,285

sn =(Bn−1
i )−1(Wn−1

i )⊤znjΓ,286

t⊤n =(wn
i )

⊤Zn−1
jΓ (Bn−1

i )−1,287

γn =1− (wn
i )

⊤znjΓ − (wn
i )

⊤Zn−1
jΓ (Bn−1

i )−1(Wn−1
i )⊤znjΓ.288

The iterative procedure for computing these inverses is summarized in Algorithm 3.1.289

Note that forming the inverse through matrix sums and vector outer products is not290

the most efficient procedure. It is faster to store the inverse as the sequences sn,291

tn and γn and, whenever the product B−1
n x is needed, to perform it as a series of292

vector-vector products:293

B−1
n x =

n∑
k=1

1

γk

sk1
 [t⊤k 1

]
x.294

If done in this manner, then B−1
n can be stored similarly to some factorizations, see295

below.296
γ1 s2 s3 s4t⊤2 γ2

t⊤3 γ3
t⊤4 γ4

297

Algorithm 3.1 Schur shuffle

1: B−1
1 = 1/γ1

2: for n = 2 to M do
3: Find sn, tn and γn

4: Form B−1
n =

[
B−1

n−1

]
+ 1

γn

[
sn
1

] [
t⊤n 1

]
10
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Note that equation (3.3) requires only the last column of B−1
n , which is298

B−1
n

[
1

]
=

1

γn

[
sn
1

]
.299

However, since the entirety of B−1
n−1 is required to calculate γn and sn, this does not300

allow us to ignore the calculation of B−1
n .301

4. Convergence analysis. We propose that the AOSMs described in subsec-302

tion 2.3 are Krylov subspace methods. In general, these methods have two compo-303

nents: the construction of a basis of a Krylov subspace, and; an optimization of the304

solution in this Krylov subspace. We discuss each component in turn.305

4.1. Krylov subspaces. We show that the difference vectors lie in Krylov sub-306

spaces. We begin by performing the static condensation process to equations (2.2)307

and (2.3). Firstly, from the first block row in each equation, we have that308

un+1
j = A−1

jj fj −A−1
jj AjΓu

n+1
jΓ .309

We plug this into the second block row to produce a fixed point iteration:310 (
Â+ En+1

i→j

)
un+1
jΓ = fΓ −AΓjA

−1
jj fj −AΓiA

−1
ii fi + En+1

i→j u
n
iΓ,311

= fK + En+1
i→j u

n
iΓ,(4.1)312

un+1
jΓ =

(
Â+ En+1

i→j

)−1

fK +
(
Â+ En+1

i→j

)−1

En+1
i→j

(
Â+ En

j→i

)−1

fK313

+
(
Â+ En+1

i→j

)−1

En+1
i→j

(
Â+ En

j→i

)−1

En
j→iu

n−1
jΓ314

= fn+1
jK +An+1

jK un−1
jΓ ,(4.2)315

where316

fK := fΓ −AΓjA
−1
jj fj −AΓiA

−1
ii fi,317

fn+1
jK :=

(
Â+ En+1

i→j

)−1

fK +
(
Â+ En+1

i→j

)−1

En+1
i→j

(
Â+ En

j→i

)−1

fK ,318

An+1
jK :=

(
Â+ En+1

i→j

)−1

En+1
i→j

(
Â+ En

j→i

)−1

En
j→i.319

The matrix An+1
jK represents the sequential solves of equations (2.2) and (2.3). The320

vector fn+1
jK is the effect of the right hand side of equation (2.1) on the solution for321

the j–th subdomain.322

Through manipulation of equation (2.1) we find323 [
Ajj AjΓ

AΓj AΓΓ + Tn+1
i→j

] [
uj

uΓ

]
=

[
fj
fΓ

]
−
[
AΓiui

]
+

[
Tn+1
i→j uΓ

]
,324 (

Â+ En+1
i→j

)
uΓ = fK + En+1

i→j uΓ.(4.3)325

Rearranging to isolate for uΓ gives326

(4.4)

(
I −

(
Â+ En+1

i→j

)−1

En+1
i→j

)
uΓ =

(
Â+ En+1

i→j

)−1

fK ∀n.327
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Meanwhile, composing equation (4.3) with the same using En+1
j→i gives328

(4.5) (I −An+1
jK )uΓ = fn+1

jK ∀n.329

Note that An
jK is defined for n ≥ 2. The Krylov subspaces may be represented330

using An
jK defined for fixed transmission conditions. We use A1

jK to denote these331

matrices.332

Lemma 4.1. Suppose the difference vectors dn+1
jΓ are the result of solving equa-333

tions (2.7) and (2.8) sequentially. Then, for both fixed and adaptive transmission334

conditions using equation (2.16),335

d2k
jΓ ∈ Kk(A

1
jK ,d2

jΓ), d2k+1
iΓ ∈ Kk(A

1
iK ,d3

iΓ),336

where337

A1
jK :=

(
Â+ E1

i→j

)−1

E1
i→j

(
Â+ E1

j→i

)−1

E1
j→i.338

Remark 4.2. While the difference vectors lie in the same Krylov subspaces for339

both fixed and adaptive transmission conditions, only those for adaptive transmission340

conditions have been optimized. Those for fixed transmission conditions lack opti-341

mization.342

Proof. We begin with fixed transmission conditions, then prove the span of the343

difference vectors is unchanged by adaptive transmission conditions. For fixed trans-344

mission conditions, ∆Tn
i→j = 0 for all n, reducing equations (2.7) and (2.8) to345

d2k
jΓ =

(
Â+ E1

i→j

)−1

E1
i→jd

2k−1
iΓ .346

Composing this equation for both subdomains results in347

d2k
jΓ =

(
Â+ E1

i→j

)−1

E1
i→j

(
Â+ E1

j→i

)−1

E1
j→id

2k−2
jΓ = A1

jKd2k−2
jΓ .348

This proves the statement of the lemma for fixed transmission conditions.349

For adaptive transmission conditions, there are two changes to the difference350

vectors: addition of ∆Tn
i→j in equations (2.7) and (2.8), and; use of Algorithm 2.1 to351

update the transmission conditions. We begin by considering the latter. Algorithm 2.1352

uses modified Gram-Schmidt to produce vectors w2k−1
i from the vectors d2k−1

iΓ , and353

v2k−1
i from E2k−1

i→j d2k−1
iΓ . Thus, the span of the vectors w2k−1

i is precisely that of the354

vectors d2k−1
iΓ . Moreover, due to Theorem 2.1, the vectors v2k−1

i lie in the span of355

E1
i→jd

2k−1
iΓ .356

By equation (3.2), we have a set of vectors z2kjΓ that lie in the span of the vectors357

(Â+ E1
i→j)

−1v2k−1
i . By Theorem 3.2,358

d2k
jΓ ∈ span

({
z2ℓjΓ
}k
ℓ=1

)
359

∈ span
({

(Â+ E1
i→j)

−1v2ℓ−1
i

}k

ℓ=1

)
360

∈ span
({

(Â+ E1
i→j)

−1E1
i→jd

2ℓ−1
iΓ

}k

ℓ=1

)
.361
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This may then be composed with the same result in the other subdomain, resulting362

in363

d2k
jΓ ∈(Â+ E1

i→j)
−1E1

i→j span

({
(Â+ E1

j→i)
−1E1

j→id
2ℓ
jΓ

}k−1

ℓ=1

)
364

∈ span
({

A1
jKd2ℓ

jΓ

}k−1

ℓ=1

)
,365

which proves the statement of the lemma for adaptive transmission conditions.366

The sequential solves of equations (2.7) and (2.8) indicate multiplicative Schwarz.367

In this case, one subdomain admits only odd values of n for dn+1
jΓ while the other368

admits only even values of n. For additive Schwarz with fixed transmission condi-369

tions, the statement of Theorem 4.1 remains true, as this is simply two instances of370

multiplicative Schwarz. However, for additive Schwarz with adaptive transmission371

conditions, the Krylov subspace is augmented.372

Lemma 4.3. Suppose the difference vectors dn+1
jΓ are the result of solving equa-373

tions (2.7) and (2.8) in parallel with adaptive transmission conditions using equation374

(2.16). Then375

dn+1
jΓ ∈ Kk(A

1
jK ,d1

jΓ) +Kl(A
1
jK ,d2

jΓ),376

where k = ⌊n/2⌋ and l = ⌊(n− 1)/2⌋.377

Proof. We proceed by induction. The first solves of equations (2.7) and (2.8) with378

the prescribed adaptive transmission conditions result in d2
jΓ = (Â+E1

i→j)
−1E1

i→jd
1
iΓ379

for both subdomains. This gives the base case, where n = 1.380

Equation (3.2) and Theorem 3.2 are unchanged by adaptive transmission condi-381

tions, and so382

dn+1
jΓ ∈ span

({
(Â+ E1

i→j)
−1E1

i→jd
k
iΓ

}n

k=1

)
383

∈ span
({

A1
jKdk

jΓ

}n−1

k=1
,d2

jΓ

)
,384

since there is no d0
jΓ such that d2

jΓ = A1
jKd0

jΓ. By the induction hypothesis, this385

means386

dn+1
jΓ ∈ A1

jK

(
Kk−1(A

1
jK ,d1

jΓ) +Kl−1(A
1
jK ,d2

jΓ)
)
+ span(d2

jΓ),387

which proves the lemma.388

4.2. Optimization. Ideally, we seek an update to the solution that lies within389

the Krylov subspace Wn+1
j that minimizes the residual in the standard Euclidean390

norm. Such an update would be equivalent to GMRES. Sadly, it does not appear391

that this minimization occurs under the AOSMs described in subsection 2.3. Instead,392

we find that the following Galerkin condition is imposed.393

Theorem 4.4. If Â + En+1
i→j is invertible, then the update to the solution due to

an AOSM is

dn+1
jΓ =

(
Â+ En

i→j

)−1

En
i→jx,

where x ∈ span(Wn
i ) such that the residual of equation (4.4) applied to un−1

iΓ + x is394

orthogonal to span(Wn
i ).395
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Proof. If Â+ En+1
i→j is invertible, then by Theorem 3.1396

(
Â+ En

i→j − vn
i (wn

i )
⊤
)−1

vn
i =

(
Â+ En

i→j

)−1

En
i→jw

n
i

(wn
i )

⊤
(
I −

(
Â+ En

i→j

)−1

En
i→j

)
wn

i

,397

following the same steps as equation (3.3). The denominator is then non-zero by this398

assumption. From equation (2.18), we may then express dn+1
jΓ as399

dn+1
jΓ =

(wn
i )

⊤ (
un
jΓ − un−1

iΓ

)
(wn

i )
⊤
(
I −

(
Â+ En

i→j

)−1

En
i→j

)
wn

i

(
Â+ En

i→j

)−1

En
i→jw

n
i400

=
(
Â+ En

i→j

)−1

En
i→jw

n
i γ.401

The residual of equation (4.4) applied to un−1
iΓ is402 (

Â+ En
i→j

)−1

fK −
(
I −

(
Â+ En

i→j

)−1

En
i→j

)
un−1
iΓ = un

jΓ − un−1
iΓ ,403

using equation (4.1) to retrieve un
jΓ. The Galerkin condition then requires x ∈404

span(Wn
i ) such that405

un
jΓ − un−1

iΓ −
(
I −

(
Â+ En

i→j

)−1

En
i→j

)
x ⊥Wn

i .406

Denoting x = Wn
i y and using En

i→jW
n−1
i = 0 and (Wn

i )
⊤Wn

i = I, this condition is407

equivalent to408

(4.6)

 I −
(
Wn−1

i

)⊤ (
Â+ En

i→j

)−1

En
i→jw

n
i

0⊤ (wn
i )

⊤
(
I −

(
Â+ En

i→j

)−1

En
i→j

)
wn

i

y = (Wn
i )

⊤ (
un
jΓ − un−1

iΓ

)
.409

The matrix for this system is invertible by the assumption that Â+En+1
i→j is invertible,410

see above.411

Since En
i→jW

n−1
i = 0, we have that412 (

Â+ En
i→j

)−1

En
i→jx =

(
Â+ En

i→j

)−1

En
i→jW

n
i y =

(
Â+ En

i→j

)−1

En
i→jw

n
i yn.413

The value of yn is easily established as γ from equation (4.6). This is then precisely414

the representation of dn+1
jΓ found above, proving the theorem.415

This highlights similarites with the full orthogonalization method (FOM) [22, 23]416

applied to equation (4.4) with implicit restarts [16]. However, the Krylov subspaces417

described in subsection 4.1 would come from FOM applied to equation (4.5). This418

creates tension between the two components, though the effect of this tension is419

unknown.420

Note that Theorem 4.4 uses un−1
iΓ to form dn+1

jΓ , even though at this stage in the421

algorithm un
iΓ, the result of calculating dn

iΓ, is available. The latter does not appear422

in equation (2.18) and so we are right to ignore it, however, the question lingers as to423

14

This manuscript is for review purposes only.



what happens to it in the course of the algorithm. Certainly, it appears subsequently424

when calculating dn+2
jΓ :425 (

wn+1
i

)⊤ (
un+1
jΓ − un

iΓ

)
=
(
wn+1

i

)⊤ (
un
jΓ + dn+1

jΓ − un−1
iΓ − dn

iΓ

)
,426

but wn+1
i is orthogonal to dn

iΓ by construction. Indeed, wn+1
i is orthogonal to all427

vectors dk
iΓ for k < n+ 1, meaning428 (

wn+1
i

)⊤ (
un+1
jΓ − un

iΓ

)
=
(
wn+1

i

)⊤ (
un+1
jΓ − u0

iΓ

)
.429

Thus, the vector dn
iΓ is not needed for the residual in the i-th subdomain, though it430

is necessary for the residual in the j-th subdomain.431

4.3. Breakdown. Breakdown in standard Krylov subspace methods are events432

that halt progress. We now explore possible breakdown scenarios in AOSMs and their433

effect on the solution. Algorithm 2.2 and Algorithm 2.3 can break down or stagnate434

either in the call to Algorithm 2.1 or in solving equation (2.18).435

Algorithm 2.1 breaks down when the input vectors are linearly dependent. As a436

result, no new wn
i can be calculated. In the course of the AOSMs, this occurs when437

dn
iΓ ∈ span(Wn−1

i ). The following proposition shows this breakdown is ‘lucky’, in the438

sense that the solution at this point is exact.439

Proposition 4.5. If dn
iΓ ∈ span(Wn−1

i ), then the update to un−3
jΓ due to Algo-440

rithm 2.2 (altAOSM) eliminates the residual of equation (4.5).441

Proof. If dn
iΓ ∈ span(Wn−1

i ), then En
i→jd

n
iΓ = 0. Thus,442

An
jKWn−1

j =
(
Â+ En

i→j

)−1

En
i→j

(
Â+ En−1

j→i

)−1

En−1
j→iW

n−1
j443

=
(
Â+ En

i→j

)−1

En
i→j

[
0 γdn

iΓ

]
= 0,444

for some γ ∈ R, see equation (2.18). Note that, since Algorithm 2.2 updates the445

transmission conditions every second iteration, An
jK = An−1

jK , while An+1
jK ̸= An

jK .446

Since the vector dn−1
jΓ ∈ span(Wn−1

j ), An−1
jK dn−1

jΓ = 0. The residual of equation (4.5)447

applied to un−3
jΓ + dn−1

jΓ is then, simplifying using equation (4.2),448

fn−1
jK − (I −An−1

jK )
(
un−3
jΓ + dn−1

jΓ

)
= un−1

jΓ − un−3
jΓ − dn−1

jΓ = 0,449

by definition of dn−1
jΓ . This update then eliminates the residual.450

Remark 4.6. Algorithm 2.3 will only break down in this way if both dn
iΓ,d

n−1
iΓ ∈451

span(Wn−2
i ). The proof is adapted by replacing dn−1

jΓ wherever it appears by dn−1
jΓ +452

dn−2
jΓ , adjusting indices as necessary.453

Equation (2.18) cannot be solved when the matrix454

I − (Wn
i )

⊤
Zn
jΓ = (Wn

i )
⊤
(
I −

(
Â+ E1

i→j

)−1

E1
i→j

)
Wn

i455

is singular. In this case, no update dn+1
jΓ can be calculated, see equation (3.3). The456

nullspace of this matrix is the set of Ritz vectors satisfying457

(Wn
i )

⊤
(
Â+ E1

i→j

)−1

E1
i→jW

n
i y = y,458
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that is, with Ritz value equal to 1. Ritz values lie within the numerical range, also459

known as the field of values [2], meaning they are bounded by the numerical radius.460

This stagnation can then be avoided if it is possible to choose E1
i→j such that the461

numerical range does not contain 1. We discuss this possibility.462

The numerical range of a matrix contains the convex hull of its eigenvalues. The463

number 1 is not an eigenvalue of the matrix in question, as such vectors imply a464

non-trivial solution to equation (2.1) with f = 0, as may be seen in equation (4.4).465

The numerical radius is bounded by the largest singular value of the matrix, and so466

a sufficient condition to avoid hard breakdown is467 ∥∥∥∥(Â+ E1
i→j

)−1

E1
i→j

∥∥∥∥
op

< 1,468

where ∥·∥op represents the operator norm induced by the 2-norm.469

Note that, since Wn
i span a Krylov subspace, the Ritz values are akin to Arnoldi-470

Ritz values. However, the Krylov subspace is developed from a different matrix, A1
jK ,471

meaning this is not a precise characterization.472

The AOSMs stagnate if (wn
i )

⊤
(un

jΓ−u
n−1
iΓ ) = 0, as this results in a null right hand473

side in equation (2.18). This can occur if the residual of equation (4.4) lies entirely474

within span(Wn
i ), which would indicate the exact solution is found by Theorem 4.4.475

In general, this stagnation does not appear to be equivalent to convergence.476

In other Krylov subspace methods, wise choices of seed vectors of the Krylov477

subspaces, here denoted w1
i , based on the initial residual are enough to give equiv-478

alence between this type of stagnation and convergence. However, in Algorithm 2.2479

this vector and the residual are both chosen through u0
iΓ. There is more choice in480

Algorithm 2.3, since one chooses both u0
iΓ and u0

jΓ, but this will still leave one sub-481

domain without choice of seed vector. This is an example of the tension between the482

two Krylov subspace components discussed earlier.483

5. Numerical examples.484

5.1. Comparison of the different versions of AOSMs. Subsection 2.3 de-485

scribes two broad categories of AOSMs, altAOSM which is applied to multiplicative486

Schwarz and paraAOSM which is applied to additive Schwarz. For each of these487

categories, we have three versions: a standard version which solves equations (2.2)488

and (2.3); a corrector version which solves equation (2.18), and; the corrector ver-489

sion coupled with the Woodbury matrix identity, which solves equation (3.3) in both490

subdomains. All three versions produce theoretically equivalent solution and differ-491

ence vectors. However, corrector versions are often more numerically stable and the492

Woodbury matrix identity can improve efficiency. We will compare all three versions493

to verify equivalence and test numerical stability. To confirm Theorem 4.4, we also494

compare a fourth version which directly applies the Galerkin condition in place of495

equation (2.18).496

We choose as a benchmark Poisson’s equation in 2D,497

(5.1)

{
∆u(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1]× [−1, 1],
u(x, y) = g(x, y), (x, y) ∈ ∂Ω.

498

We use an evenly spaced grid of N points, such that there are
√
N points in the499

x-direction and
√
N points in the y-direction. The grid spacing is then h = 2/(

√
N −500

1). The operator ∆ may be represented using a 5-point finite difference stencil.The501
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xΓ xΓ
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Fig. 5.1: Splitting of one domain into two non-overlapping subdomains. This is the
algebraic splitting for both Dirichlet and Robin transmission conditions, but is the
physical splitting only for Robin transmission conditions.

αβ

Ω

α β

Ω1 Ω2

Fig. 5.2: Splitting of one domain into two overlapping subdomains. When using
Dirichlet boundary conditions, this is the equivalent physical splitting.

Dirichlet boundary conditions may be implemented either by directly replacing the502

values on the stencils, or by using appropriate rows of the identity matrix. We opt503

for the former [25], which is equivalent to choosing T 1
i→j = 0 for both subdomains.504

We split the domain into two subdomains, Ω1 and Ω2, along a given value of505

x = xΓ, see Figure 5.1. This split is primarily algebraic, meaning only the variables on506

the interface of the domain are repeated. However, when using Dirichlet transmission507

conditions implemented as described, the boundary of the physical subdomains is one508

step away from this interface, see Figure 5.2. This gives a physical overlap of 2h,509

where h is the size of the elements. Using Robin transmission conditions, the physical510

subdomains are as pictured in Figure 5.1 and the method is non-overlapping.511

As has been noted in subsection 2.1, the zeroth order OSM for this problem is512

T 1
1→2 = T 1

2→1 = − 1
2AΓΓ + pI [5], with p = −π/h3/2 when using the convention513

that the diagonal entries of the matrix are −4/h2. If using the convention that the514

diagonal entries are 4, then multiply through by −h2. We compare the three versions515

of altAOSM and the comparable GMRES in solving equation (5.1) with N = 10, 000,516

N1 = 4900, N2 = 5000, and M = 100, as well as f = g = 1. Initial guesses are chosen517
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Fig. 5.3: Comparison of altAOSM versions, including standard, corrector, Woodbury
and FOM, in solving equation (5.1) with N = 10, 000, M = 100, using both Robin
and Dirichlet boundary conditions. Also shown is the OSM with and without GMRES
for this problem.

to be zero. Error is measured as the Euclidean distance between the solution obtained518

by each method and the control solution obtained by solving the full system. Note519

this then does not account for any approximation error, only for the error resulting520

from using a Schwarz method to solve the system.521

The results are seen in Figure 5.3. We can see that all four versions of altAOSM,522

for both types of boundary conditions, are numerically equivalent. There are mi-523

nor stability differences at the level of saturation, which may cause issues for more524

complicated problems.525

The corresponding OSM is shown for benchmark purposes. For OSM to converge526

properly, its initial guess is chosen at random so that it contains modes of all frequen-527

cies [5]. We see that altAOSM significantly outperforms this more basic method. We528

also see that indeed the Dirichlet boundary conditions are significantly slower than the529

optimized Robin conditions. When accelerating the OSM with GMRES, convergence530

is comparable to altAOSM.531

Robin boundary conditions, which have been optimized according to known OSM532

standards [25], provide faster convergence in altAOSM for the first number of iter-533

ations. After this, convergence slows. The method remains fast compared with the534

OSM and achieves the same level of saturation as altAOSM starting from Dirichlet535

boundary conditions.536

Figure 5.4 shows the same trends hold true of paraAOSM, namely numerical537

equivalence between the four versions with minor discrepancies in stability at satura-538

tion. GMRES-accelerated OSM no longer has comparable convergence to paraAOSM.539

Robin conditions offer improved convergence for OSM but not for paraAOSM. In540

comparing altAOSM with paraAOSM, we note that paraAOSM achieves faster con-541

vergence due to the larger Krylov subspace explored at each iteration. Note also542

that each iteration of paraAOSM requires roughly twice as much computation as an543
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Fig. 5.4: Comparison of paraAOSM versions, including standard, corrector, Wood-
bury and GMRES, in solving equation (5.1) with N = 10, 000, M = 100, using both
Robin and Dirichlet boundary conditions. Also shown is the OSM for this problem.

xΓ xΓ xΓ

Ω Ω1 Ω2

Fig. 5.5: Splitting of one domain into two non-overlapping red-black subdomains.

iteration of altAOSM, though paraAOSM is fully parallelizable, meaning with two544

processors the time to compute each iteration should be the same.545

5.2. Red-black decompositions and multiple subdomains. Let us now546

consider other possible splittings of the subdomain, in particular a red-black decom-547

position. In such a decomposition, the domain is split into many pieces, such as strips548

or rectangular domains for 2D problems. These pieces are then grouped into two549

subdomains, such that each subdomain alternates pieces. This decomposition takes550

its name from the checkerboard shape that results when splitting rectilinear grids551

into smaller squares. Figure 5.5 shows the red-black decomposition we will use in this552

example, which splits our square domain into strips.553

This decomposition is similar to a strip-wise decomposition into multiple sub-554
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Fig. 5.6: Convergence of OSM, altAOSM, and paraAOSM in solving equation (5.1)
with a red-black decomposition.

domains. Indeed, each of the blocks defined in equation (2.1) are block diagonal,555

in particular A11 and A22 which permits the full parallelization of their inversions.556

However, the Schur complements are full, as are the adaptive transmission condi-557

tions Tn+1
i→j that result from the AOSM. This prevents a complete decomposition into558

multiple subdomains with this version of the AOSM.559

For this example, we apply five methods: the corresponding OSM and both al-560

tAOSM and paraAOSM with optimized Robin and Dirichlet conditions as initial561

transmission conditions. The domain, with N = 10, 000, is split into four strips such562

that each subdomain stretches over all 100 values of y. The subdomains alternate563

possession of the values of x, such that the first 29 belong exclusively to the first564

subdomain, then an interface, then 19 in the second subdomain, then an interface,565

then 19 in the first, then an interface, then 30 in the second. In this way, N1 = 4800,566

N2 = 4900 and M = 300.567

The results are presented in Figure 5.6. All AOSMs converge to saturation well568

before the artificial limit of M iterations, which represents roughly the amount of569

computation required to compute the Schur complement. As before, we see that570

optimized initial transmission conditions do not necessarily support faster convergence571

than Dirichlet conditions. The paraAOSM performs slightly better than altAOSM,572

and both significantly outperform the OSM.573

We repeat this example with a checkerboard red-black decomposition, as seen in574

Figure 5.7. The splitting uses the same division of the values of x, then repeats this575

division over the values of y. In this way, N1 = 4704, N2 = 4705 and M = 591.576

There are nine crosspoints which complicate the OSM for this problem. By setting577

the transmission conditions to zero at these points, we retrieve a convergent OSM.578

Again, A11 and A22 are block diagonal, permitting parallelization of their inver-579

sions, while the Schur complements and transmission conditions are full. Results of580

this example are presented in Figure 5.8 and show similarities to those of Figure 5.6.581

Note that M is roughly twice as large for this example, resulting in roughly twice as582
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Fig. 5.7: Splitting of one domain into two non-overlapping checkerboard subdomains.
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Fig. 5.8: Convergence of OSM, altAOSM, and paraAOSM in solving equation (5.1)
with a checkerboard red-black decomposition.

many iterations required to reach saturation of the error.583

As stated, the transmission conditions Tn+1
i→j are full, a problem when generalizing584

the AOSM to multiple subdomains. Figure 5.9 shows the contours of one of these585

transmission conditions, specifically Tn+1
1→2 resulting from the altAOSM. The left of this586

figure shows this result for the strip-wise decomposition. It is clear from this figure587

that this matrix has a 3× 3 block structure, corresponding to the three interfaces of588

the decomposition. The right of the figure uses the checkerboard decomposition and589

shows a significantly more complicated block structure. The matrix Tn+1
i→j would then590

be better resolved by considering each of its blocks separately. This requires significant591

modification to the AOSM and would likely permit a complete decomposition into592

multiple subdomains.593
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Fig. 5.9: Contours of the matrix Tn+1
1→2 that results from altAOSM applied to the (left)

strip-wise and (right) checkerboard red-black decompositions.

5.3. Helmholtz equation. We next apply the two AOSMs to the Helmholtz594

equation, to show its effectiveness on non-SPD problems. We set595

(5.2)

{
∆u(x, y) + k2u(x, y) = 0, (x, y) ∈ Ω = [−1, 1]× [−1, 1],
u(x, y) = 1, (x, y) ∈ ∂Ω.

596

We use the same discretization and subdomains as previously for the Laplace operator.597

That is, we use an evenly spaced grid of N points with grid spacing h = 2/(
√
N − 1)598

in both the x and y-directions. The operator ∆ is represented with a 5-point finite599

difference stencil. The domain is split algebraically into two subdomains along a given600

value of x = xΓ, see Figure 5.1, such that N1 = 4900, N2 = 5000, and M = 100.601

The value of k is set to 2π/10h, resulting in 10 grid points per wavelength. Dirichlet602

transmission conditions are used initially, thus there is a physical overlap of 2h.603

Note that equation (5.2) is more delicate than the one with complex Robin con-604

ditions on the outer boundary. For the latter, one can optimize the parameters in the605

transmission conditions to obtain good convergence for all frequencies [11]. This is not606

possible for the Dirichlet problem because of reflected waves [14]. We continue with607

Dirichlet boundary conditions to show the effectiveness of the AOSMs over optimized608

Schwarz methods.609

We test this problem using altAOSM and paraAOSM with initial Dirichlet trans-610

mission conditions. For comparison, we also use multiplicative Schwarz with acceler-611

ation by GMRES and additive Schwarz with and without GMRES.612

Results are presented in Figure 5.10. Convergence for the four Krylov methods,613

which are the two AOSMs and the Schwarz methods accelerated with GMRES, follow614

similar convergent trajectories. The altAOSM appears to suffer a stability issue which615

slows down its convergence in comparison to its multiplicative counterpart, while the616

paraAOSM and its additive counterpart closely mirror one another. The standard617

additive Schwarz method does not converge, which previous research tells us is due618

to the boundary conditions in the problem [11, 14].619

5.4. Heat equation. AOSMs may be particularly suited for time-dependent620

problems, given that the transmission conditions resulting from each time step can be621
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Fig. 5.10: Convergence of additive Schwarz, multiplicative Schwarz with GMRES, ad-
ditive Schwarz with GMRES, altAOSM and paraAOSM in solving equation (5.2). The
AOSMs and GMRES-accelerated Schwarz methods have similar convergence curves,
while additive Schwarz diverges.

stored. This will give AOSMs on subsequent time steps a head start, or possibly even622

allow the time steps to be completed in two iterations, if the transmission conditions623

are sufficiently resolved.624

To test this, we examine the heat equation, in the form625

(5.3)


ut(x, y, t) = ∆u(x, y, t), (x, y) ∈ Ω = [−1, 1]× [−1, 1], t ∈ [0, T ]

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = g(x, y), (x, y) ∈ ∂Ω, t ∈ [0, T ].

626

In space, we again use a finite difference formulation so that the same matrix A from627

subsection 5.1 can be used to represent the Laplacian. In time, we use a backward628

Euler integration scheme, such that629

un+1 − un

∆t
= Aun+1.630

This gives a system to solve at each time step of the form631

(5.4) (I −∆tA)un+1 = un.632

As in subsection 5.1, we split the domain into two non-overlapping subdomains,633

of the form of Figure 5.1. We choose u0(x, y) = 1 and g(x, y) = 0. We take again634

N = 10, 000, N1 = 4900, N2 = 5000, and M = 100. The time step is chosen as635

∆t = 0.01. We use optimized Robin boundary conditions as initial transmission636

conditions, which uses T 1
1→2 = T 1

2→1 = − 1
2AΓΓ + pI where637

p =

√
π

h3

(
π2

4
+

1

∆t

)1/4

∆t,638
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Fig. 5.11: Convergence of OSM and AOSMs at the first six time steps of equation
(5.4). AOSMs that use updated transmission conditions at each time step are labelled
‘Sat’.

which may be retrieved from [25]. Again, if the diagonal entries of A are 4 instead of639

−4/h2, then multiply these transmission conditions by −h2. We seek convergence to640

a tolerance of 10−8.641

We test five methods. For each type of AOSM, altAOSM and paraAOSM, we test642

one version using the initial transmissions throughout and a second version which uses643

the adaptive transmission conditions found from the previous time step. We refer to644

this second version as ‘saturated’. The first time step is then identical for each pair.645

These four methods are then compared against the OSM for this problem.646

We are not concerned with the discretisation error between the physical solution647

to equation (5.3) and that found by solving equation (5.4). Instead, we focus on the648

approximation error between solving equation (5.4) directly, which we will call the649

control solution, and solving the equation using an AOSM, specifically alt-AOSM.650

The first six steps of each method are presented in Figure 5.11. The OSM main-651

tains steady convergence at each step, though it is slow compared with the AOSMs.652

The stopping criteria for the AOSMs causes over-convergence, allowing the error to653

fall several orders of magnitude below what is required.654

The convergence rate of the AOSMs is similar across these time steps. As the655

transmission conditions are adapted, this convergence is sped up slightly. While al-656

tAOSMmaintains good accuracy throughout these time steps, the paraAOSM declines657

in stability. At t = 0.05, we see that the unsaturated paraAOSM begins to diverge658

from the true solution.659

We count the number of iterations each of the five methods requires to achieve660

tolerance for twelve steps. The results are presented in Table 5.1. Both OSM and661

altAOSM consistently achieve their tolerance. The paraAOSMs are unable to achieve662

their tolerance as time marches on.663

From these results, we can conclude that paraAOSM has stability issues if left664
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Table 5.1: Iteration counts for each time step of equation (5.4). A dash indicates the
method failed to converge to the desired tolerance.

t 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
altAOSM 20 20 20 20 22 22 22 24 30

altAOSM - Sat. 20 16 15 12 13 11 11 11 11
paraAOSM 20 18 20 20 - - - - -

paraAOSM - Sat. 20 8 13 15 14 16 13 14 15
OSM 40 35 35 35 35 35 35 35 35

t 0.10 0.11 0.12
altAOSM 26 - -

altAOSM - Sat. 8 8 7
paraAOSM - - -

paraAOSM - Sat. - - -
OSM 35 35 35

unattended. This is most likely due to the manner in which the augmented Krylov665

subspace is constructed which, unlike in standard GMRES, is formed as the sum666

of two separate Krylov subspaces. A specialized version of modified Gram-Schmidt667

or stabilizing techniques from Krylov subspace method literature may improve the668

method to working order. One can also consider using two non-interacting instances669

of altAOSM in the same way that additive Schwarz is two non-interacting instances670

of multiplicative Schwarz. This will not improve convergence rates or accuracy, but671

it will produce a solution on every subdomain at each iteration.672

We can also conclude that re-using the adapted transmission conditions at sub-673

sequent time steps leads to better results. In both versions of AOSM, this reduces674

the number of iterations required and improves stability. Since these adaptations to675

the transmission conditions are low rank updates, it is possible that they can become676

oversaturated once the updates reach full rank.677

One can also improve the manner in which the transmission conditions are re-678

used. In the present example, the recycled transmission conditions are treated as new679

matrices T 1
i→j . It may be beneficial to instead treat them as adaptations of the original680

transmission conditions from the first step, thereby preserving the orthogonality of681

the vectors wn
j and the nullspace of the matrices En

i→j .682

5.5. Heterogeneous elliptic example on an unstructured grid. The pre-683

vious examples considered are relatively easy for any method to compute. Grids684

have been rectilinear and PDEs have been tractable. Let us now consider a more685

challenging PDE to make sure the success of the AOSMs is not restricted to trivial686

computations. To that end, we consider the PDE687

(5.5)

{
−∇ (α(x, y) · ∇u(x, y)) = f(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1],

u(x, y) = g(x, y), (x, y) ∈ ∂Ω.
688

We choose α(x, y) = 1 except along three thin channels in the domain, where α(x, y) =689

1000. This example is adapted from [10].690

We use finite element method software, MEF++, to construct the domain and691

linear system, resulting in an unstructured grid with N = 937 points. The value of692
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Fig. 5.12: (Left) Values of α(x, y) over the unstructured grid generated by MEF++
for equation (5.5). Blue represents the value of 1, while yellow represents the value of
1000. (Right) Subdivision of the domain into two subdomains. Red and blue nodes
represent the points exclusive to one of the two subdomains, while pink stars represent
points shared by the two subdomains.

α(x, y) is given for this grid in Figure 5.12, left. The three channels are intended to693

strongly link the two subdomains.694

We subdivide the domain manually such that the interface is roughly vertical, see695

Figure 5.12, right. 37 points are chosen for the interface, 487 for the first subdomain,696

and 413 for the second. The optimized Robin transmission conditions are approxi-697

mately T 1
i→j = −0.5AΓΓ + pK, where K is a diagonal matrix containing the values of698

α(x, y) along the interface and p is a constant not specifically prescribed [17]. We find699

that p = 0.67 is roughly optimal. For true optimized Robin transmission conditions,700

both the contribution of AΓΓ and K must be scaled to account for the difference in701

sizes of the elements, leading to non-constant p and T 1
1→2 ̸= T 1

2→1. An alternative to702

manual selection is the reverse Cuthill-McKee algorithm [15] applied to the matrix A703

generated by the FEM software, which minimizes the bandwidth of the matrix, and704

then selecting a suitable block. This does not guarantee a straight interface, which705

may require adapting the OSM.706

We seek convergence to 10−8. We start with zero boundary conditions and a707

unit source. Figure 5.13 shows the convergence curves of the methods tested: the708

corresponding OSM; altAOSM and paraAOSM with Dirichlet initial transmission709

conditions, and; altAOSM and paraAOSM with Dirichlet initial transmisson condi-710

tions. Due to the high disparity in values of α(x, y) throughout the domain, the OSM711

fails to converge. The AOSMs also struggle, but manage to reach tolerance within712

the artificial limit of M iterations. Dirichlet boundary conditions work best as ini-713

tial transmission conditions, which is at odds with expectations but consistent with714

previous results.715

Note that if the channels are extended to the boundaries of the domain, the716

problem is significantly easier to solve numerically. The OSM becomes a convergent717

method, while the AOSMs converge to the tolerance in roughly half the number of718
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Fig. 5.13: Convergence of OSM and AOSMs in solving equation (5.5) with g(x, y) = 0
and f(x, y) = 1.

iterations.719

We are interested in whether we can indeed re-use the transmission conditions720

that result from the AOSMs. Let us consider a second right hand side with zero721

boundary conditions and a source function722

f(x, y) = (x− 1/2)2(y − 1/2)2.723

There are several options on how to re-use these transmission conditions. We test724

eight variants: For each of the four AOSMs tested with the first right hand side, we725

use the resulting adapted transmission conditions directly in an OSM, thus keeping726

them fixed at their current update, and as initial transmission conditions for the same727

methods, thereby implicitly restarting them.728

The results are presented in Figure 5.14. On the left, we see the OSMs with729

recycled transmission conditions converge linearly, with those transmission conditions730

adapted from Dirichlet conditions permitting fastest convergence. The original OSM731

is included for comparison. As before, it fails to converge.732

On the right of Figur Figure 5.14, we have the ‘implicitly restarted’ AOSMs. Each733

now converges significantly faster than previously. Again, Dirichlet conditions appear734

to be the better choice of initial transmission conditions, as their results show faster735

convergence and greater stability.736

Comparing between these methods, it appears to be unnecessary to continue to737

adapt transmission conditions once a good set has been found, as the OSM is able to738

converge in comparative number of iterations as the ‘implicitly restarted’ methods.739

6. Conclusions and future work. We have presented two methods, Algo-740

rithm 2.2 and Algorithm 2.3, for adaptively optimizing transmission conditions of a741

Schwarz method for any nonsingular algebraic system. The adaptations arise from an742

algebraic decomposition of the system and can therefore be employed with minimal743

knowledge of the continuous problem.744

27

This manuscript is for review purposes only.



5 10 15 20 25 30 35

Iteration

10
-10

10
-5

10
0

10
5

2
-n

o
rm

 o
f 

e
rr

o
r

Original

alt w/ Robin

para w/ Robin

alt w/ Dirichlet

para w/ Dirichlet

5 10 15 20 25 30 35

Iteration

10
-10

10
-5

10
0

10
5

2
-n

o
rm

 o
f 

e
rr

o
r

altAOSM - Robin

paraAOSM - Robin

altAOSM - Dirichlet

paraAOSM - Dirichlet

Fig. 5.14: Convergence of OSM (left) and AOSMs (right) in solving equation (5.5)
with g(x, y) = 0 and f(x, y) a quadratic function and recycled transmission conditions.

The adaptations are rank one updates intended to expand the nullspace of the745

matrices E1
i→j , the difference between the initial transmission conditions and the746

relevant Schur complements, which represent the optimal transmission conditions,747

see subsection 2.2. The core principle is to find a decomposition of E1
i→j that can be748

added to the transmission conditions.749

We have shown that, with these adaptive transmission conditions, the iterates lie750

within Krylov subspaces, or the sum of Krylov subspaces in the case of paraAOSM,751

and satisfy a Galerkin condition, see section 4. We discussed three cases of breakdown,752

one which was equivalent to convergence, one which could be avoided, and one which753

remains a possibility.754

Our numerical examples have shown the AOSMs are applicable broadly, and may755

be especially useful for time dependent problems or situations with multiple right756

hand sides, see section 5.757

The next major step is to generalize the AOSMs to an arbitrary number of do-758

mains. Subsection 5.2 details options similar to this generalization that can be im-759

plemented within a two-subdomain framework. These show that a full generalization760

to multiple subdomains is significantly more complicated than the AOSM presented761

here.762

Several modifications are possible and worthy of investigating. Is there a choice of763

adaptation that allows replacement of the Galerkin condition with stronger optimiza-764

tion in the Krylov subspace? What is the cause of the stability issues of paraAOSM?765

Can multipreconditioning be employed to extract adapted transmission conditions766

faster? How can these methods be applied to more complicated decompositions?767
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